

Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

Maria Elena Monzani for the LZ Collaboration

Kavli Institute for Particle Astrophysics and Cosmology

IDM, July 24, 2018

Moore's Law of Direct Detection

LZ as a Discovery Instrument

The Xenon TPC Detector

The Xenon TPC Detector... Simulated!

Inner Detector, in simulation

Bottom PMT

HV cathode feedthrough

CAD model

Measurement-driven detector model

Projected TPC light collection efficiency 12%

Characterization of LZ PMTs @ Imperial College London

LZ Reflectivity Measurements @ LIP Coimbra

arXiv: 1801.01597 arXiv: 1612.07965

High Statistics Calibrations in LUX

LZ Detector Response

Complete Model of LZ Detector

Value
0.119
0.102
83
79
0.977
100
0.269
0.95
0.38
3-fold

S2 electron extraction efficiency

Drift field [V cm⁻¹]

Electron lifetime [µs]

0.95

310

850

Backgrounds – Detector Materials

Populate edges: Skin and Outer detector tag

External Backgrounds

- Activity intrinsic to the detector construction materials
 - Main concerns: PMTs, PMT Bases, Cryostat, PTFE, etc.
- Comprehensive radio-assay campaign for detector materials:
 - gamma-screening, ICP-MS, NAA; ~1000 assays so far, ~600 to go
- Excellent self-shielding properties of LXe, plus active veto system to suppress (& characterize residual) backgrounds
- Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Background Source	Mass	$^{238}\mathrm{U}_{e}$	$^{238}\mathrm{U}_{l}$	$^{232}\mathrm{Th}_{e}$	$e^{232}\mathrm{Th}_l$	60 Co	$^{40}\mathrm{K}$	n/yr	ER	NR
	(kg)				q/kg				(cts)	(cts)
Detector Components		0.4		1445						1
PMT systems	308	31.2	5.20	2.32	2.29	1.46	18.6	248	2.82	0.027
TPC systems	373	3.28	1.01	0.84	0.76	2.58	7.80	79.9	4.33	0.022
Cryostat	2778	2.88	0.63	0.48	0.51	0.31	2.62	323	1.27	0.018
Outer detector (OD)	22950	6.13	4.74	3.78	3.71	0.33	13.8	8061	0.62	0.001
All else	358	3.61	1.25	0.55	0.65	1.31	2.64	39.1	0.11	0.003
			(Before	e S2/S1	discrin	nination)	5	subtotal	9	0.07

Active Veto System

Z

- 0.61 m thick Gd-loaded scintillator
- instrumented Xenon "skin"
- we can tag neutrons and gammas

In-situ monitoring of residual backgrounds

Backgrounds – Uniform through volume

Solar (pp)

Solar (⁸B) Atmospheric, SN

Neutrino Backgrounds

0.46

0.51

322

subtotal

- Elastic v-e interactions (signal is an electron recoil):
 - Solar neutrinos: pp, ⁷Be, ¹³N

Atmospheric neutrinos (Atm)

- Neutrinoless $\beta\beta$ decay of ¹³⁶Xe
- Coherent elastic v-A interactions (irreducible background):
 - Solar Neutrinos: ⁸B and hep (below nominal threshold)
 - Atmospheric and diffuse supernova neutrinos
- Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Background Source	Mass (kg)	$^{238}\mathrm{U}_{e}$ $^{238}\mathrm{U}_{l}$ $^{232}\mathrm{Th}_{e}$ $^{232}\mathrm{Th}_{l}$ $^{60}\mathrm{Co}$ $^{40}\mathrm{K}$ $^{60}\mathrm{mBq/kg}$	n/yr	ER (cts)	NR (cts)
Physics	- 1A1 11 11 11 11 11 11				
136 Xe $2\nu\beta\beta$				67	(- L
Solar neutrinos: $pp+^7$ Be	$+^{13}N$			255	
Diffuse supernova neutri				14.7	0.05

(Before S2/S1 discrimination)

Uniform ER Internal Backgrounds

- Kr, Ar requirement: 0.015 ppt (g/g) natKr, 0.45 ppb (g/g) natAr
 - Demonstrated 2-pass ^{nat}Kr reduction at 10⁹ (10⁷ required)
 - Kr removal process also efficient at eliminating Ar
- Radon estimate: 1.81 μ Bq/kg ²²²Rn, 0.09 μ Bq/kg ²²⁰Rn
 - Extensive Rn emanation assay campaign in progress
 - 1.53 μBq/kg from Rn emanation, 0.28 μBq/kg from dust
- Surface Contamination: Radon Daughters (210Pb) and dust
 - ²¹⁰ Pb, ²¹⁰Bi plate-out: less than 0.5 mBq/m² on the TPC walls
 - Generic dust contamination < 500 ng/cm² on all wetted surfaces

Uniform ER Internal Backgrounds

• Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Background Source		$^{238}\mathrm{U}_{e}$	$^{238}\mathrm{U}_{l}$			⁶⁰ Co	$^{40}{ m K}$	n/yr	ER	NR
	(kg)			mBq	/kg				(cts)	(cts)
Surface Contamination	n	e e								1
Dust (intrinsic activity, 5	500 ng/cr	n^2)							0.2	0.05
Plate-out (PTFE panels,		(cm^2)							. 8	0.05
²¹⁰ Bi mobility (0.1 μBq/	kg LXe)								40.0	-
Ion misreconstruction (50										0.16
²¹⁰ Pb (in bulk PTFE, 10	mBq/kg	g PTFE)							-	0.12
			(Befo	ore S2/S	1 discr	iminati	on) s	subtotal	40	0.39
Xenon contaminants										
222 Rn (1.81 µBq/kg)									681	4
220 Rn (0.09 µBq/kg)									111	
nat Kr (0.015 ppt g/g)									24.5	-
nat Ar (0.45 ppb g/g)									2.5	- 4
			(Befo	ore S2/S	1 discr	iminati	on) s	subtotal	819	0

Counts/1000 days: WIMP-search ROI

Nominal: 5.6 ton fiducial, 1000 live-days ~1.5 - 6.5 keV, single scatters, no coincident veto

Background Source	ERs	NRs
Detector Components	9	0.07
Dispersed Radionuclides — Rn, Kr, Ar	819	
Laboratory and Cosmogenics	5	0.06
Surface Contamination and Dust	40	0.39
Physics Backgrounds — 2β decay, neutrinos*	322	0.51
Total (after 99.5% ER discrimination, 50% NR efficiency)	5.97	0.52

^{*} not including ⁸B and hep

Residual background spectra, nominal FV

Nominal: 5.6 ton fiducial, 1000 live-days Single scatters, no coincident veto, before ER/NR discrimination

Putting it all together: LZ Sensitivity Estimate

LZ Sensitivity Paper available on arXiv: 1802.06039

Simulated signal & background, 1000-day run

Projected WIMP Sensitivity: Spin Independent

3σ and 5σ discovery potential

Sensitivity vs Radon level

Spin-dependent sensitivity

Naturally occurring Xe: ≈50% odd-neutron isotopes (26.4% ¹²⁹Xe and 21.2% ¹³¹Xe by mass)

Spin structure functions from Klos et al, Phys. Rev. D89, 022901 (2014)

Summary and Conclusions

- Data-driven model of LZ sensitivity:
 - As-built detector design
 - Measured component properties
 - Accurate LXe response model
- Detailed background model
 - Powerful vetoing strategy
 - Dominated by dispersed radionuclides
 - PDF model of residual backgrounds
- LZ commissioning in 2020:
 - 1,000 day nominal science run
 - SI WIMP sensitivity: 1.6 × 10⁻⁴⁸ cm²
 - 3σ discovery potential: 3.8×10^{-48} cm²