Status of the LZ Project

Hugh Lippincott
Fermilab
February 23, 2018
UCLA Dark Matter 2018
LZ Detector Overview

- Liquid Xe heat exchanger tower
- Cathode high voltage connection
- Instrumentation conduits
- Existing water tank
- Gadolinium-loaded liquid scintillator veto
- Outer detector PMTs
- 7 tonne active volume liquid Xe TPC. 10 tonnes total
2 Scientific Performance chap:SIP

Figure 2.1.2: LZ sensitivity projections. The baseline LZ assumptions described in this Technical Design Report give the solid black curve. LUX and ZEPLIN results are shown in broken blue lines. If LZ achieves the design goals listed in Table ??, the sensitivity would improve, resulting in the pink sensitivity curve. The gray line shows the projected sensitivity in the LZ Conceptual Design Report (CDR) [10](see text for details of the changes from the CDR to this report). The shaded regions show regions where background NRs from cosmic neutrinos emerge [13]. SIPf:LZSISens

In particular, solar neutrinos have been considered as both an interesting signal and as an irreducible background to a WIMP search. LZ will observe the pp fusion chain of our sun in real time via elastic $\nu_e - e^-$ scattering, in a lower energy regime than the only other real-time measurement to date, and will most likely detect neutrinos from ^8B via coherent nuclear scattering. The coherent neutrino signal from a nearby supernova would be a unique, flavor-independent probe of the neutrino flux.

We have also estimated the potential of LZ to observe neutrinoless double-beta decay ($0\nu\beta\beta$) from ^{136}Xe, and considered the impact on the reactor/source neutrino anomaly and on searches for a neutrino magnetic moment of a prolonged exposure of LZ to a nearby ^{51}Cr neutrino source.

2.2.1 Solar and Atmospheric Neutrinos SIPs:SAN

2.2.1.1 Elastic Scattering of Solar Neutrinos SIPs:PP

A prominent background for WIMP dark matter searches in LZ will come from the elastic scattering of solar neutrinos from the pp fusion chain [14] with the atomic electrons in xenon. Our calculations of the rate of these scatters agree with those of [13] under the same assumptions. The calculations in this report, however,
Figure 2.1.2: LZ sensitivity projections. The baseline LZ assumptions described in this Technical Design Report give the solid black curve. LUX and ZEPLIN results are shown in broken blue lines. If LZ achieves the design goals listed in Table ??, the sensitivity would improve, resulting in the pink sensitivity curve. The gray line shows the projected sensitivity in the LZ Conceptual Design Report (CDR) [10] (see text for details of the changes from the CDR to this report). The shaded regions show regions where background NRs from cosmic neutrinos emerge [13].

In particular, solar neutrinos have been considered as both an interesting signal and as an irreducible background to a WIMP search. LZ will observe the pp fusion chain of our sun in real time via elastic $\nu_e - \nu_e$ scattering, in a lower energy regime than the only other real-time measurement to date, and will most likely detect neutrinos from 8B via coherent nuclear scattering. The coherent neutrino signal from a nearby supernova would be a unique, flavor-independent probe of the neutrino flux.

We have also estimated the potential of LZ to observe neutrinoless double-beta decay ($0\nu\beta\beta$) from 136Xe, and considered the impact on the reactor/source neutrino anomaly and on searches for a neutrino magnetic moment of a prolonged exposure of LZ to a nearby 51Cr neutrino source.

2.2.1 Solar and Atmospheric Neutrinos

A prominent background for WIMP dark matter searches in LZ will come from the elastic scattering of solar neutrinos from the pp fusion chain [14] with the atomic electrons in xenon. Our calculations of the rate of these scatters agree with those of [15] under the same assumptions. The calculations in this report, however,
Schedule

- CD1 Review – March 2015
- CD2 Review – April 2016
- CD3 Review – February 2017 - construction can start in earnest
- Cryostat fabrication just completed
- PMT array assembly begins in March
- Xenon handling installation and commissioning starts Fall 2018
- TPC installation Spring-Summer 2019
- Cooldown starts Winter 2019
- First physics data – Spring 2020
Design notes

• Lots of mass – 7 tonnes in TPC, 5.6 tonnes fiducial
 – 494 3” PMTs in TPC
 – 58 drift field sections covered by PTFE segments

• 50 kV cathode HV
 – Significant R&D and prototyping at SLAC

• 2-component veto system
 – LXe skin – 93 1” PMTs, 38 2” PMTs
 – Outer detector – 120 8” PMTs (see S. Shaw, next)

• Gas circulation/purification system
 – 500 slpm, turns over inner volume every ~2.5 days

• Calibrations
 – Extensive internal and external sources, including DD generator and photoneutron sources
Radiopurity

• Nothing goes into the detector without being screened
 – ~2000 planned assays, roughly 50% complete
 • 13 HPGe detectors, Neutron Activation Analysis, GDMS, two ICPMS setups, four radon emanation chambers, two XIA alpha counters, etc.
 – Extensive searches for low radioactivity components
 • Titanium for cryostat and other internal structures
 • All PMT materials screened before fabrication by Hamamatsu, finished PMTs assays 95% complete
 • All PMT base components and completed bases (100%)
 • PTFE source material (in fabrication now)
 • Bolts, nuts, peek fasteners, cable ties, cables, instrumentation, etc., etc., etc.
 – Internal detector components contribute less than 10 total events before discrimination! (See J. Dobson on sensitivity)
Radiopurity

• Backed up by extensive quality control
 – E.g. Cryostat fabrication – weld coupons made early on were hotter than stock Ti
 – Fabrication stopped, massive screening investigation launched
 – Wrong welding tips were being used - color code on one provided by a supplier was missing, and trace Th was being introduced into the welds
 – Caught in time, fabrication restarted
Radon and Dust

• Radon (naked Pb beta decay) is biggest expected background (see J. Dobson)

• Extensive radon assay campaign underway
 – Cables, getter, heat exchanger
 – Some credit taken for cold components

• Radon mitigation system for portion of warm plumbing

• Dust another large component
 – 500 ng/cm² of dust allowed

• All parts fabricated in well-understood clean rooms with witness plates and travelers to ensure quality control

• Commercial vendor cleaning most TPC parts
LZ Project

• Ready for the picture round
On Site Facilities

- Low radon, class 100-1000 cleanroom ready at SURF for first parts
- Radon reduction system installed
- Underground improvements started, to finish by May
Xenon

- 10.7 tonnes xenon under contract (most in 2016)
- 6.5 tonnes in hand, with final delivery middle of 2019
Xenon and Krypton

• Chromatography to separate krypton (and 85Kr) from xenon
• Demonstration of 0.075 ppt in R&D at SLAC
• Production system designed to remove to 0.015 ppt (subdominant by >10x to radon)

On track for production second half of 2019
Xenon Circulation

- Full circulation test planned underground starting end of 2018
- Commission all parts of circulation system with a dummy cryostat
Cryostat

- Fabrication complete at Loterios in Italy - about to ship to US
PMTs

- 3” PMT delivery complete except for small number of replacements (96% yield)
- Main array assembly construction launching at Brown in March, practice assembly now underway

All PMTs cold tested at Brown

Titanium array plate machining

PALACE shipping frame

Base burn in at Imperial
HV Delivery

- Main cable tested to 120 kV
- Full cathode testing happening now in LAr

Liquid argon testing at LBNL
HV Grids and Rings

- TPC field rings being machined
- Prototype grid rings for bottom and cathode complete, to be tested in SLAC system test
- Machining of production grid rings underway

Titanium TPC field ring

Grid weaving loom at SLAC: Loom in action
System Test and R&D

- PTFE reflectivity measurements, wire emission, HV design verification, purification, circulation, full scale grid QA, etc, etc, completed or in full swing
Excellent results obtained with prototype 1.
• Final bonding of side tanks this month
• Liquid scintillator production at BNL this summer
Software

• Complete simulation and reconstruction package from events to waveforms to analysis

• Exercised in mock data challenges
 – Second MDC starts in April

• Sensitivity estimates are mature (J. Dobson)

• Will be ready for first data
Summary

• On schedule and on budget
• Good technical progress on all fronts, no showstoppers
• First physics data planned in April 2020