



# The LZ Dark Matter Detector

Maria Elena Monzani on behalf of the LZ Collaboration



**SUSY 2015, August 25** 

#### LZ = LUX + ZEPLIN (+ others)



#### LZ collaboration:

- currently 30 institutions
- USA, UK, Portugal, Russia
- about 185 physicists and engineers
- collaboration is rapidly expanding



LZ collaboration meeting, Alabama, April 2015

#### **Moore's Law of Direct Detection**



#### **Moore's Law of Direct Detection**



#### Go big or go home!

Z

**Liquid detectors:** 

"easy" scaling

LZ

Total Xe mass – 10 T

**Active Mass – 7 T** 

Fiducial Mass – 5.6 T



LUX

#### **LZ Overview**





#### The Xenon TPC Detector





- Backgrounds, backgrounds:
  - External (PMT, Cryostat, etc.): select materials carefully
  - Internal (Kr + Rn): Kr removal by charcoal chromatography
  - Cosmogenic (muons etc.): experiment deep underground
  - Cosmogenic (neutrinos): ER/NR selections, will graze floor



- Backgrounds, backgrounds:
  - External (PMT, Cryostat, etc.): select materials carefully
  - Internal (Kr + Rn): Kr removal by charcoal chromatography
  - Cosmogenic (muons etc.): experiment deep underground
  - Cosmogenic (neutrinos): ER/NR selections, will graze floor
- Maximize WIMP target mass:
  - Self-shielding necessary (Xe100-LUX: fiducial fraction ~1/2)
- ER and NR Calibrations:
  - Self-shielding complicates matter: source injections (LUX)
- High-voltage requirements:
  - No Xe detector (to date) achieved design HV specifications



- Backgrounds, backgrounds:
  - External (PMT, Cryostat, etc.): select materials carefully
  - Internal (Kr + Rn): Kr removal by charcoal chromatography
  - Cosmogenic (muons etc.): experiment deep underground
  - Cosmogenic (neutrinos): ER/NR selections, will graze floor
- Maximize WIMP target mass:
  - Self-shielding necessary (Xe100-LUX: fiducial fraction ~1/2)
- ER and NR Calibrations:
  - Self-shielding complicates matter: source injections (LUX)
- High-voltage requirements:
  - No Xe detector (to date) achieved design HV specifications

Z

- Two-component outer detector:
  - 0.75 m thick Gd-loaded scintillator
  - instrumented Xenon "skin"
  - tag neutrons and gammas

in-situ monitoring of
residual backgrounds!!!

- Two-component outer detector:
  - 0.75 m thick Gd-loaded scintillator
  - instrumented Xenon "skin"
  - tag neutrons and gammas

in-situ monitoring of
residual backgrounds!!!



- Two-component outer detector:
  - 0.75 m thick Gd-loaded scintillator
  - instrumented Xenon "skin"
  - tag neutrons and gammas

in-situ monitoring of residual backgrounds!!!



Z

- Two-component outer detector:
  - 0.75 m thick Gd-loaded scintillator
  - instrumented Xenon "skin"
  - tag neutrons and gammas

in-situ monitoring of
residual backgrounds!!!





|                                                                     | ER   | NR   |
|---------------------------------------------------------------------|------|------|
| WIMP background events (99.5% ER discrimination, 50% NR acceptance) | 1.96 | 0.41 |
| Total ER+NR background events                                       | 2.3  | 37   |

# Z

|                                                                     | ER    | NR   |
|---------------------------------------------------------------------|-------|------|
| Total events                                                        | 391.5 | 0.82 |
| WIMP background events (99.5% ER discrimination, 50% NR acceptance) | 1.96  | 0.41 |
| Total ER+NR background events                                       | 2.3   | 37   |

# Z

|                                                                     | <u>ER</u> | NR   |
|---------------------------------------------------------------------|-----------|------|
| Neutrinos (v-e, v-A)                                                | 271       | 0.5  |
| Total events                                                        | 391.5     | 0.82 |
| WIMP background events (99.5% ER discrimination, 50% NR acceptance) | 1.96      | 0.41 |
| Total ER+NR background events                                       |           | 7    |

# Z

|                                                                     |  |               |      | ER    | NR   |
|---------------------------------------------------------------------|--|---------------|------|-------|------|
| Dispersed radionuclides (Rn, Kr, Ar)                                |  |               | 54.8 |       |      |
| <sup>136</sup> Xe 2νββ                                              |  |               |      | 53.8  | -    |
| Neutrinos (v-e, v-A)                                                |  | <br>41 1 - 17 |      | 271   | 0.5  |
| Total events                                                        |  | -             |      | 391.5 | 0.82 |
| WIMP background events (99.5% ER discrimination, 50% NR acceptance) |  |               | 1.96 | 0.41  |      |
| Total ER+NR background events                                       |  | <u> </u>      | 2.3  | 2.37  |      |

| ER N | IF |
|------|----|
|------|----|

| Item                                                                | Mass<br>kg | U<br>mBq/kg | Th<br>mBq/kg | <sup>60</sup> Co<br>mBq/kg | <sup>40</sup> K<br>mBq/kg | n/yr   | ER<br>cts | NR<br>cts |
|---------------------------------------------------------------------|------------|-------------|--------------|----------------------------|---------------------------|--------|-----------|-----------|
| R11410 PMTs                                                         | 93.7       | 2.7         | 2.0          | 3.9                        | 62.1                      | 373    | 1.24      | 0.20      |
| R11410 bases                                                        | 2.7        | 74.6        | 29.1         | 3.6                        | 109.2                     | 77     | 0.17      | 0.03      |
| Cryostat vessels                                                    | 2,140      | 0.09        | 0.23         | ≈0                         | 0.54                      | 213    | 0.86      | 0.02      |
| OD PMTs                                                             | 122        | 1,507       | 1,065        | ≈0                         | 3,900                     | 20,850 | 0.08      | 0.02      |
| Other components                                                    |            |             |              |                            |                           | 602    | 9.5       | 0.05      |
| Total components                                                    |            |             | 1 - 1        | 18 40                      | 10 _ 3 !!                 |        | 11.9      | 0.32      |
| Dispersed radionuclides (Rn, Kr, Ar)                                |            |             |              |                            | 54.8                      | 14.5   |           |           |
| <sup>136</sup> Xe 2νββ                                              |            |             |              |                            |                           |        | 53.8      | io.       |
| Neutrinos (v-e, v-A)                                                | 4 1 1      |             | 4 - 41       |                            | 1 - 1                     | A 101  | 271       | 0.5       |
| Total events                                                        |            |             |              |                            |                           |        | 391.5     | 0.82      |
| WIMP background events (99.5% ER discrimination, 50% NR acceptance) |            |             |              |                            | 1.96                      | 0.41   |           |           |
| Total ER+NR background events                                       |            |             |              | 2.3                        | 37                        |        |           |           |



- Backgrounds, backgrounds:
  - External (PMT, Cryostat, etc.): select materials carefully
  - Internal (Kr + Rn): Kr removal by charcoal chromatography
  - Cosmogenic (muons etc.): experiment deep underground
  - Cosmogenic (neutrinos): ER/NR selections, will graze floor
- Maximize WIMP target mass:
  - Self-shielding necessary (Xe100-LUX: fiducial fraction ~1/2)
- ER and NR Calibrations:
  - Self-shielding complicates matter: source injections (LUX)
- High-voltage requirements:
  - No Xe detector (to date) achieved design HV specifications

#### **Xenon detector prototyping**



- Extensive program of prototype development underway
- Three general approaches:
  - Testing in liquid argon, primarily of HV elements, at Yale and soon at LBNL
  - Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, Yale/UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhl
  - System test platform at SLAC, Phase I about 100 kg of LXe,
     TPC prototype testing to begin in a few weeks











# **Expected Sensitivity Reach of LZ**



#### Conclusions





- DOE CD-1/3a approval in April 2015
- April 2016: CD-2/3b review expected
- June 2017: surface assembly at SURF
- July 2018: underground installation
- Extensive prototyping program underway
- LZ benefits from excellent LUX calibrations and understanding of backgrounds
- LZ science run to start in 2019:
  - Spin-Indep. sensitivity: 2×10<sup>-48</sup> cm<sup>2</sup>
  - 3 years run, 5.6 tons fiducial volume
  - sensitivity limited by neutrino-induced backgrounds

