

Radioactive Screening, Material Selection, and Cleanliness for the LUX-ZEPLIN Experiment

Dr. Alvine Kamaha University at Albany, State University of New York (On behalf of the LZ collaboration)

LUX-ZEPLIN (LZ)

- LZ is primarily a dark matter search experiment using a **dual phase noble LXe TPC** to search for WIMPs (494 3" PMTs viewing 7 tonnes LXe TPC)
 - S1: Primary scintillation
 - S2: Proportional scintillation (light emitted by electrons extracted into gas phase) - proportional to the charge
 - Full 3D position reconstruction → target fiducialisation
 - Z from S1-S2 timing
 - X-Y from light patterns in PMT array(s)
 - Size of S1, S2 allows for NR/ER discrimination

 $(S_2/S_1)_{ER} >> (S_2/S_1)_{NR}$ \Rightarrow 99.95% ER background (β , γ) discriminations against signal (WIMPs)

[LZ Technical Design Report, <u>arxiv:1703.09144</u>]

Backgrounds Origins in LZ

[LZ Projected WIMP sensitivity for 1000 live days, 5.6 tonnes FV, <u>arxiv:1802.06039v1</u>]

Backgrounds Origins in LZ

[LZ Projected WIMP sensitivity for 1000 live days, 5.6 tonnes FV, arxiv:1802.06039v1]

Backgrounds Control in LZ

• Fixed contaminants: Screening campaign of detector materials to know intrinsic (U, Th, K, Co) background content

• Rn Emanation program of detector materials to determine the amount of Rn being emanated by these materials

 Surface contamination tracking & minimization program during detector construction to know Rn & dust deposited on TPC surface during assembly

Screening campaign

- 5 year screening campaign using HPGe & ICP-MS detectors across many sites in US, UK & Korea
- Cross-calibration of detectors for consistency checks
- Assay results used to determine material suitability & component location where this is a concern e.g. PMTs
- Campaign covered everything from raw materials through to fully constructed detector components

-500

Ongoing QC measurements to tackle potential radio \bigcirc Activity - ⁴⁰K LZ PMT Bottom Array - ⁴⁰K purity issues Entries 40 Upper Limits Measured Values 500 30 Y (mm) (11±3) mBq/PMT average ⁴⁰K 20 → Below requirement 10 -500

10

A. Kamaha (SUNY ALBANY) -- LZ @ TAUP 2019

30

20

Specific Activity (mBq/PMT)

Screened PMTs = 17

Total PMTs = 241

500

0

X (mm)

Upper Limit

25

20

15

-10

5

Screening campaign

- More success stories
 - Titanium used for cryostat vessel below expectation [<u>arxiv: 1702.02646</u>]
 - PMT Bases (Example raw materials constructed LZ item)
 - Excellent agreement between component prediction and measurement

	Values in uBq/base						
	U238(e)	U238(I)	Th232(e)	Th232(l)	K40	Co60	
Measured	1900 ± 700	390 ± 50	200 ± 50	170 ± 20	< 2500	< 14	
Component	1700 ± 40	390 ± 8	150 ± 5	140 ± 5	380 ± 20	< 7	

Rn Emanation campaign

Rn Emanation campaign

- Rn emanation detectors across 4 sites in UK&US
 - 2 different Rn emanation techniques
 - Dissolve Rn into liquid scintillator and identifies radon by the ²¹⁴Bi-²¹⁴Po timing coincidence
 - silicon-pin diode which measures the alpha decays from ²¹⁴Po and ²¹⁸Po
- Cross-calibration campaigns of all Rn emanation detectors
- All detector components & combined systems Rn emanated
 - E.g.
- ICV Emmanation
- Xe tower Emanation
- Getter Emmanation (2.26±0.28 mBq, within expectation)

Cross-calibration with various samples

Getter (Xe purifier) Rn emanation

Surface contamination during construction

• Exposure to ambient air in the assembly clean room facility leads to Rn & dust deposition on TPC surfaces during LZ detector construction

Rn emanated from dust accumulated on surfaces during construction slowly dispersed in TPC

Leads to ²¹⁴Pb naked in LXe fiducial volume during data taking → ER background

Requirement: <500 ng/cm²

Plate-out onto TPC surfaces, long-lived isotope

Resulting **a** from ²¹⁰Po can produce **n** via (**a**,n) → NR background

Plateout on TPC inner wall creates complicated wall background

Requirement <0.5 uBq/m² on inner TPC Teflon

Dust deposition estimation

- Two technical probes utilized
 - witness coupons & tape lifts
- Two models developed
 - modified SNO model & ASML model
 - Focus on modified SNO model (originally developed by <u>Hallman & Stokstad</u>, 1991)

$$\frac{dm}{dt} = \int_{D \ge 0.5 \mu m} \frac{\pi}{6} n(D) \rho D^3 v \eta \ dD$$

Modified factor added due to LZ cleanroom conditions (e.g. humidity)

• Excellent agreement between technical probes & models enabling accurate estimation of dust deposition on TPC surfaces

witness coupons image under microscope showing dust particulates of different sizes

Rn progeny plate-out estimation

- Plate-out estimated using Jacobi model validated/calibrated for this purpose [arXiv:1708.08534]
- Plate-out rate mostly depends on clean room parameters & exposure time of surfaces to ambient air

$$R_p = C_{Rn} \lambda_{Pb_{210}} \frac{\Lambda_d}{(\Lambda_d + \Lambda_v)} \frac{V}{A} * T$$

TAUP

- Correct prediction of plate-out onto neutral metallic surfaces
- Underestimation of plate-out onto Teflon (highly triboelectric) so correction factor T=50-100 included.
 - Mitigation: LZ procured de-ionizing fans to successfully neutralize Teflon → T=1

Surface contamination mitigation

De-ionizing fans blowing on TPC to neutralize its surfaces mainly made of Teflon. Electrostatic measurements show successful neutralization

A. Kamaha (SUNY ALBANY) -- LZ @ TAUP 2019

Surface contamination mitigation

Surface contamination mitigation

LZ cleanliness program in numbers

- >20,000 parts,
- ~1200 screening and Rn emanation assays,
- >100 cleaning protocols, applications and references
- >1000h of cleaning since the assembly started

	LZ Requirement	Current Best Estimate
Rn Plateout (inner TPC)	0.5 mBq/m²	0.107 ± 0.020 mBq/m ²
Dust Deposition (entire TPC)	500 ng/cm²	210 ± 16 ng/cm ²
Total Rn Emanation	20 mBq	Underway

Conclusion

- LZ has gone through an extensive and stringent radio-contaminant control program to build the cleanest and biggest TPC detector to date!
- Vast screening campaign to select ultra-low bckg components → e.g. Ti used for Cryostat vessel [LZ Titanium paper, <u>arxiv: 1702.02646</u>]
- Rigorous surface contamination tracking, control & response program during TPC detector construction.
 - $\circ~$ This is the first elaborated cleanliness program in the DM field!
 - TPC construction is now complete and accumulated surface deposition well below requirement
 - <1g of dust accumulated on the entire TPC after remedial cleaning!
- LZ radio-contaminant control program paper coming out *soon*

Keep an eye out for

- The LUX-Zeplin Dark Matter Experiment
 - Talk by Alden Fan in DM2-202 Session (Monday, 14:40)
- Backgrounds and Simulations for the LUX-ZEPLIN Experiment
 - Talk by Amy Cottle in DM4-202 Session (Monday, 16:30)
- The LZ Outer Detector
 - Talk by Bjoem Penning in DM16-202 Session (Thursday, 14:40)
- Development and performance of high voltage electrodes for the LZ experiment
 - Talk by Kelly Stiffer in DM16-202 Session (Thursday, 15:00)

Thank you

LZ Materials assay & cleanliness Group

Kevin Lesko Chamkaur Ghag Aaron Manalaysay Jerry Busenitz Cecilia Levy Paul Scovell **Richard Schnee** Bai Xai Juergen Reichenbacher Andy Cole Pavel Zarzhitsky Jack Genovesi Stefan Aviles Umit Utku Nicolas Angelides Rick Gaitskell, Casey Rhine, Devon Seymour,... Thomas Slusser

- - 1 - - -

Back up

Dust deposition

- Agreement between the 3 probes utilized by LZ to track dust deposition on TPC surfaces
- Calibration of modified SNO model using witness coupons

• Calibrated modified SNO model vs tape lift results in excellent agreement!

Tape lift date	Exposure time (days)	Dust deposition: modified SNO model (ng/cm²)	Dust deposition: tape lifts (ng/cm²)
09/27/2018	1	285 +/- 53	220 +50 -20
11/29/2018	64	829 +/- 154	750 -800

Surface contamination mitigation

- Detector construction in class 1000 Radon Reduced Cleanroom (RCR)
- Rn & dust constantly monitored & cleanliness protocols applied whenever needed. Eg. of developed cleanliness protocols
 - Reduce personnel to strict minimum within RCR
 - Frequent change of garb and gloves
 - Detector assembly & Cleaning done under de-ionizing fans
 - Constant UV inspection & cleaning of components prior and after assembly
 - Adequate storage of components after work shifts (2*Nylon bagged and N₂setup & readv to be used when needed), etc...

Rn Emanation campaign

- Rn emanation detectors across 4 sites in UK&US
 - 2 different Rn emanation techniques Ο
 - Dissolve Rn into liquid scintillator and identifies radon by the ²¹⁴Bi-²¹⁴Po timing coincidence
 - silicon-pin diode which measures the alpha decays from ²¹⁴Po and ²¹⁸Po

²¹⁸Po and ²¹⁴Po

alpha and are

Emanation

[LZ, Constraining Rn background, arxiv:1708.08533]

A. Kamaha (SUNY ALBANY) -- LZ @ TAUP 2019