Radon reduction in Dark Matter Detectors

Wolfgang Lorenzon University of Michigan (8-Dec-2019) CPAD 2019

NIMA 903 (2018) 267 http://arxiv.org/abs/1805.11306

This work is supported by

Radon - what is it and why is it bad?

- 1. radioactive noble gas
- 2. dissolves in LXe and cannot be removed with hot gas purifying getters
- 3. ²²²Rn is a product of ²³⁸U decay (everywhere) mean life of τ_{Rn} = 5.516 day = 7943 min
- 4. ²²²Rn is resupplied continuously from detector components
 - dominant background in DM searches
 - cannot currently purify all 10 t of LXe
 - focus on gaseous areas which are particularly bad
- 5. 214 Pb naked β^{-} decay can mimic Dark Matter signals

In-line Radon reduction system

- reduce 20 mBq by a factor of 20 at a flow rate of 0.5 slpm
 - i. $N = \tau_{Rn} A (= 5,516 d * 1.0 mBq) = 476 Rn atoms (steady-state population)$
- sequestration of atoms in activated carbon trap until most ²²²Rn nuclei decay
 - i. think gas chromatography: v(Xe)/v(Rn) (-85 C) \approx 1000
- to obtain removal of 90%, sequestration time \geq ln(10)· τ_{Rn} = 12.7 days

Activated Charcoals tested

Saratech

CarboAct

Shirasagi

Charcoal	Density (g/cm ³)	Surface area (m²/g)	Spec. activity (mBq/kg)	Price (\$/kg)
Shirasagi	0.45	1,240	101 ± 8	27
CarboAct	0.28	1,000	0.23 ± 0.19	15,000*
Saratech	0.60	1,340	1.71 ± 0.20	35
Saratach (HNO ₃)	0.60	1,340	0.51 ± 0.09	135
Density of graphite: 2.26 g/cm ³			provided by Carter Hall	* 1/3 of price of gold

Elution Curves

small trap: 0.1 l

medium trap: 1.0 l

 k_a -adsorption coefficient, m-carbon mass (g), τ – *breakthroughtime*(min), F-flow rate (SL/min)

 $\tau = \frac{k_a m}{r}$,

Dynamic Absorption Coefficient

- Expectation:
 - i. N_2 and Ar carrier gas follow exponential rise w/ inverse temp (Arrhenius law)
 - ii. Xe carrier gas on Saratech follows Arrhenius law (more or less)
- Surprises:
 - i. Xe carrier gas on CarboAct violates follows Arrhenius law (???)
 - ii. k_a with Xe carrier gas is about 10x 50x smaller than in He, N₂, and Ar carrier gas

Adsorption of Xenon gas on Charcoal

- Xenon gas adsorption: ca 1.6 kg / kg of charcoal
 - i. Increases linear with decreasing temperature
 - ii. Increases only slightly with pressure
- Ar, N₂ and He gas adsorption: tiny (below 20 g/kg of charcoal)

Small Rn trap for LZ (GXe)

- dN/dm: specific activity (Saratech: 0.51 mBq/kg)
- Need 6 kg of etched Saratech to reduce Rn concentration to 1 mBq at 0.5 slpm
- Interestingly, lowest achievable Rn concentration does NOT depend on total mass N_{out} (min) = 0.70, 0.45 mBq N_{out} (min) = 2.80, 1.80 mBq

Full Rn trap for LZ?

- Current in-line system (10 kg of etched Saratech)
 - i. suppresses Rn concentration in GXe space >20x to about 0.7 mBq
 - ii. cannot be used to purify all 10 t of Xe at 500 slpm:
 - takes $T_v = 58.5$ hrs (2.5 days) to turn over 10 t of Xe
 - only slightly shorter than the radon half-live (τ = 3.8 days)
 - how much can you reduce Rn concentration?

Full Rn trap for LZ?

- Current In-line system (10 kg of etched Saratech)
 - i. suppresses Rn concentration in GXe space >20x to about 0.7 mBq
 - ii. cannot be used to purify all 10 t of Xe

at 500 slpm:

- takes $T_v = 58.5$ hrs (2.5 days) to turn over 10 t of Xe
- only slightly shorter than the radon life time (τ = 5.52 days)
- how much can you reduce Rn concentration?
- can only reduce Rn concentration by 70% (3.3x) at best (ie dN/dm = 0)
- true for any RRS (carbon trap, distillation tower, ...)
- need 2,000 slpm to reduce it by 90% (10x)

max Rn reduction $\tau / (\tau + T_v)$

Full Rn trap for LZ?

- Current In-line system (10 kg of etched Saratech)
 - i. suppresses Rn concentration in GXe space >20x to about 0.7 mBq
 - ii. cannot be used to purify all 10 t of Xe

at 500 slpm:

- takes $T_v = 58.5$ hrs (2.5 days) to turn over 10 t of Xe
- only slightly shorter than the radon half-live (τ = 3.8 days)
- how much can you reduce Rn concentration?
- can only reduce Rn concentration by 69% (3.2x) at best (ie dN/dm = 0)
- true for any RRS (carbon trap, distillation tower, ...)
- need 2,000 slpm to reduce it by 90% (10x)

Large Carbon trap for LZ?

- - -

$$N_{out} = N_{in}e^{-\frac{m}{m^*}} + \frac{dN}{dm}m^*(1 - e^{-\frac{m}{m^*}}) \quad m^* = \frac{f\tau_{Rn}}{k_a}$$

- Current in-line system (10 kg of etched Saratech)
 - i. 0.5 slpm
 - suppresses Rn concentration in GXe space >20x to about 0.7 mBq
 - m* = 1.4 kg
 - N_{out} (min) = 0.7 mBq
 - ii. at 500 slpm
 - m* = 1,370 kg
 - for 10 kg trap: Rn_out = 45 mBq > Rn_in first term dominates
 - for (very) large trap: Rn out = 700 mBq >> Rn in

second term dominates N_{out} (min) = 700 mBq (for large trap) (remember: traps 1.6 kg Xe / kg of charcoal)

Does Not Work

What about a Vacuum Swing System?

- Shown to reach > 99% efficiency of removing Rn from room air
 - purge gas is exhausted
 - Rn levels in room air about
 100 200 Bq/m³
- Could this work for Xe ?
 - Xe expensive
 - need to return into circulation path before VSA
 - Rn levels in xenon typically around 2 μBq/kg (ie 20 mBq for 10 tons of Xe)

Vacuum-Swing Adsorption

Ideal VSA system with feedback purge

- Radon trapped in purple loop and slowly decays away
- If we assume: specific activity of carbon is negligible
- For 99% efficient trap, at steady state 54.6% of Rn atoms escape VSA system, which corresponds to 32% radon reduction in LZ

Ideal VSA with Cold Charcoal Trap

- Radon trapped in purple loop and slowly decays away
 - CCT increases time Rn atoms spend in feedback loop before entering back into VSA
- If we assume: specific activity of carbon is negligible
- For 99% VSA efficiency, and 20% CCT efficiency: 4.2% of Rn atoms escape VSA!!
- For 90% VSA efficiency, and 20% CCT efficiency: 32.7% of Rn atoms escape the VSA system, which corresponds to 47% radon reduction in LZ

Ideal VSA for LZ?

- Rn reduction within LZ given the performance of ideal VSA and Carbon trap for 500 slpm
- Rn reduction within LZ is defined by:
 Rn_rrs / Rn_em
- The maximum reduction of Rn in LZ with a perfect RRS is 69.9% at a flow rate of 500 slpm

Would Work – But ...

Realistic VSA for LZ

- If adding Rn contribution from the trap, assuming
 - 60 kg of Saratech in VSA
 - 0.51 mBq/kg specifc activity
 - 500 slpm
 - 20 mBq into the LZ
 - -> N_out = 20.1 mBq > N_in (-0.5% efficient)
 - -> trap will add more Rn
 - -> does not work
- How could it work?
 - If specific activity: 0.01 mBq/kg: 50x smaller than currently available
 - -> 85% efficient
 - -> 60% reduction of Rn in LZ
 - -> would work, but really hard to achieve (w/ charcoal-based traps)
 - -> use trap that does not emanate Rn

Conclusions

- Rn will become an even larger issue with larger Xe DM experiments
- For 10 tons Xe detectors:
 - need flow rates of 2,000 slpm wo reduce Rn concentration 10x
 - at 500 slpm (or below) best we can do is to reduce initial concentration 3.3x for any kind of RRS (even for systems w/ zero specific activities)
 - carbon traps of any flavors will not work (unless specific activities -> 0)
 - not studied distillation tower performance
- For G3: ~50 tons Xe detectors:
 - need to further suppress 2 µBq/kg Rn concentration
 - or end up with 100 mBq (maybe reduce to ~30 mBq)
 - Rn likely dominant background source

Backup

The Langmuir Adsorption Model

- Idea:
 - i. Adsorption surface is immersed in a gas in which equilibrium has been established b/w gas molecule that get adsorbed (ie trapped) and those that escape (through therm. excitation)
 - ii. Adsorbing surface forms at most a monoatomic layer
 - iii. A_{max} = total area of adsorption surface, A = area occupied by monoatomic layer
- Consequence:
 - i. In equilibrium: prob. of trapping an additional molecule: A_{max} A

prob. for adsorbed molecule to be liberated: c A

at 1 bar:

- avg rate of collision / unit area: 3.5 ns !!
- Xe saturates charcoal almost completely
- AND immediately
 - i. really scared us before we built the trap
 - ii. but (somewhat)consistent with data

Arrhenius Equation

$$k = Ae^{\frac{-E_a}{k_b T}}$$

k: rate constant, E_a : activation energy (J), k_b : Boltzmann constant (J/K), T: temperature (K)

Inverse temperature, (1000/K)

- describes temperature dependence of chemical reaction rates
- Thus: when a reaction has Nitrogen (2 SLPM, 1 atm, OVC 4×8, 50 g) rgon (2 SLPM, 1 atm, OVC 4x8, 50g) a rate constant that obeys en (2 SLPM, 1 atm, Saratech, 70 g) 222-Rn average residence time. (min) $_{
 m o}^{
 m CD}$ rgon (2 SLPM, 1 atm, Saratech, 70 g) Arrhenius' equation, a plot Vitrogen (2 SLPM, 1 atm, Shirasagi, 45 g) Argon (2 SLPM, 1 atm, Shirasagi, 45 g) of ln(k) versus T^{-1} gives a straight line! 10-3.5 3.4 3.9 3.6 3.8 37