Search for Dark Matter with the LUX/LZ detectors

Mani Tripathi University of California, Davis

> AAPCOS SINP, Kolkata 10/16/15

Search for Dark Matter with the LUX/LZ detectors

Mani Tripathi University of California, Davis

> AAPCOS SINP, Kolkata 10/16/15

Search for Dark Matter with the LUX/LZ detectors

Mani Tripathi University of California, Davis

> AAPCOS SINP, Kolkata 10/16/15

Outline

- 1. The Dark Matter problem
- 2. Direct detection of DM in a laboratory
- 3. Two-phase Xenon Time Projection Chambers
- 4. Updated calibrations of the LUX detector
- 5. The future: LZ program

The Dark Matter Problem

A good problem to have. There is a known effect looking for an answer ... as opposed to a known solution looking for an experimental effect.

A real challenge for experimentalists to study this known energy density.

•Postulate 1: DM is a particle.

•Postulate 2: DM and SM particles interact with some force that is very weak but <u>much</u> stronger than gravity.

Detection Techniques

•Three major categories of investigations.

•Important to maintain the theoretical connection between these approaches.

Direct Detection

Basic goal: search for nuclear recoil from DM *... elastic scattering.

Simple dynamics. Cross section α (form factor)²

Spin-independent: Nucleon form factor gives rise to A^2 enhancement due to coherence.

The dependence on q^2 is also contained in the form-factors.

Spin-dependent: Form factor depends on nuclear spin. No coherence enhancement.

Time Progression of Sensitivity

Animation courtesy of Aaron Manalaysay, UC Davis

Current Experiment: LUX

The LUX Collaboration

Richard Gaitskell Simon Fiorucci Samuel Chung Chan **Dongqing Huang** Casey Rhyne Will Taylor James Verbus **Amportal College** Imperial College London Henrique Araujo

Tim Sumner Alastair Currie Adam Bailey

Graduate Student Khadeeja Yazdani Graduate Student

PI. Professor

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Reader

Professor

PI, Professor

Scientist

Scientist

Postdoc

Senior Scientist

Senior Scientist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Leader of Adv.

Postdoc

Lawrence Berkeley + UC Berkeley

Bob Jacobsen Murdock Gilchriese Kevin Lesko Peter Sorensen Victor Gehman Attila Dobi Daniel Hogan Mia Ihm Kate Kamdin Kelsey Oliver-Mallory

Lawrence Livermore

Adam Bernstein

Kareem Kazkaz enardo LIP Coimbra

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Francisco Neves Alexander Lindote Claudio Silva

Dan Akerib Thomas Shutt Kim Palladino Tomasz Biesiadzinski Christina Ignarra Wing To **Rosie Bramante** Wei Ji T.J. Whitis

Detectors Grp. Staff Physicist Graduate Student PI, Professor

Assistant Professor Senior Researcher Auxiliary Researcher Postdoc Postdoc

SLAC Nation Accelerator Laboratory

PI, Professor PI. Professor Project Scientist Research Associate Research Associate Research Associate Graduate Student Graduate Student Graduate Student

SD School of Mines

PI. Professor Graduate Student

Xinhua Bai

Doug Tiedt

David Taylor

Mark Hanhardt

Project Engineer Support Scientist

짜 Texas A&M

James White Robert Webb

Paul Terman

Rachel Mannino

PI, Professor PI. Professor Graduate Student Graduate Student

University at Albany, SUNY

PI, Professor Matthew Szydagis Jeremy Mock Postdoc Steven Young Graduate Student

UC Davis

Mani Tripathi

Dave Herner

Ray Gerhard

Jacob Cutter

James Morad

Sergey Uvarov

Sally Shaw

PI, Professor Britt Hollbrook Senior Engineer John Thmpson Development Engineer Senior Machinist **Electronics Engineer** Aaron Manalaysay Postdoc Scott Stephenson Postdoc Graduate Student Graduate Student Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Susanne Kyre	Engineer
Dean White	Engineer
Carmen Carmona	Postdoc
Scott Haselschwardt	Graduate Studen
Curt Nehrkorn	Graduate Studen
Melih Solmaz	Graduate Studen

University College London -11/6

Chamkaur Ghag PI, Lecturer Graduate Student

Collaboration Meeting, Lead, June 2015

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc Tom Davison Graduate Student Maria Francesca Marzioni Graduate Student

Carter Hall PI. Professor Jon Balajthy Graduate Student **Richard Knoche** Graduate Student

Frank Wolfs	PI, Professor
Wojtek Skutski	Senior Scientist
Eryk Druszkiewicz	Graduate Student
Dev Ashish Khaitan	Graduate Student
Mongkol Moongweluwan	Graduate Student

University of South Dakota

Dongming Mei

Angela Chiller

Yale

Daniel McKinsey

Ethan Bernard

Markus Horn

Blair Edwards

Kevin O'Sullivan

Elizabeth Boulton

Scott Hertel

Nicole Larsen

Brian Tennyson

Lucie Tvrznikova

Evan Pease

Chris Chiller

Chao Zhang

PI. Professor Postdoc Graduate Student Graduate Student

PI, Professor Research Scientist Research Scientist Postdoc Postdoc Postdoc Graduate Student Graduate Student Graduate Student

Graduate Student Graduate Student

The LUX detector

•

- ~ 7m diameter Water Cerenkov Shield.
- 48 cm H (gate to cathode) X 47 cm D
- active region with 181 V/cm drift field

•250 kg (active), 118 kg (fiducial) of Lxe
•122 photomultiplier tubes (top plus bottom)

Two Signal Technique

Why Xenon?

Nobel element => Inert. Can be purified via gettering techniques.

No long-lived radio-isotopes. Metastable istopes useful in calibration.

Background Suppression

A large suppression of backgrounds required:

- Gamma induced electron recoils. Discrimination is based on measuring two characteristic signals from the recoil. The discriminant employed is log (S2/S1) as a function of S1
- 2. Neutron induced nuclear recoils. Neutrons need to be eliminated:
 - Deep underground deployment
 - •Use of ultra-low radioactivity materials and components
 - Large external shield (e.g., water)
 - Active veto (e.g., gadolinium doped liquid scintillator)
 - Double scatters (DM does not)

Physics Handled by NEST

- Noble Element Simulation Technique is a a datadriven model explaining the scintillation and ionization yields of noble elements as a function of particle type, electric field, and *dE/dx* or energy
- Provides a full-fledged Monte Carlo (in Geant4) with
 - Mean yields: light and charge, and photons/electron
 - Energy resolution: key in discriminating background
 - Pulse shapes: S1 and S2, including single electrons
- The wealth of data on noble elements was combed and all of the physics learned combined

M. Szydagis et al., JINST 8 (2013) C10003. <u>arxiv:1307.6601</u> M. Szydagis et al., JINST 6 (2011) P10002. <u>arxiv:1106.1613</u> J. Mock et al., Submitted to JINST (2013). <u>arxiv:1310.1117</u>

Event Energy Reconstruction

Energy = $[N_{ph} + N_{e.}] * W$ = $[(S1 / g_1) + (S2 / g_2)] * 13.7e-3 keV(ee)$

- g_1 is an overall efficiency, mapped out with Kr83m
- g₂ accounts for electron extraction efficiency and number of photons detected per extracted electron
- NR has factor L < 1 accounting for fewer overall quanta (not just S1 photons) being generated due to NR being more effective making more NR (i.e. heat)

Previously 65%, but it is product of absolute yield with is what matters

New Calculation of the g-Factors

12% efficiency for the detection of a primary scintillation photon Previously 14% quoted

NR Charge and Light Yields

• *in situ* measurements

- No longer relying on LUX AmBe, ²⁵²Cf, or modeling from old data, or extrapolating from results of small test chambers.
- Charge yield Measured down to ~0.8 keVnr. (Previous low 4 keV)
- Data from Deuterium-Deuterium neutron gun. Use S2 to identify double scatters. Determine energy deposition from scattering angle. For S1, S2-derived energy scale.
- Light yield measured down to ~1.2 keVnr. (Previous low 3 keV)

----- NEST 1.0 still too conservative ----- Modified NEST for re-analysis

• New modeling

Same scrutiny for ER 60 55 at 180(Worn 50 NESTVM 45 (Anysucced) park type PRELIMINARY 20 10 Energy (keV_) Charge Yield (Electrons/keV) at 180(V/cm) 0 0 0 0 0 0 0 0 0 0 0 0 0 Qy 127 x-ray MS 127 x-ray SS

NESTV98

PRELIMINARY

0.5

0.2

Tritium

10

20

2

Energy (keV_)

50

- Internally-deployed tritium source provides ER from 0 to 18 keVee
 - LUX measurably efficient at 1 keV!
- Improved stats over calibration in first LUX result, running longer
 - High statistics provide very precise determination of probability for an ER event to "leak" down into NR S2/S1 region, as a function of S1
- This ER provides us with both light and its charge yield too

Because uniformly distributed, used with ^{83m}Kr for good, accurate measure of the fiducial volume

Distribution of Backgrounds

- 3.6 +/- 0.3 x 10⁻³ single scatters/(keV-kg-day) in low-energy regime
 - Measured 3.5 ppt Kr with RGA. PMT gamma-rays = biggest background
 - Cosmogenics from surface run have decayed away (Xe131m, Xe129m)
 - Potential fiducial mass increase (was 118 kg in 2013)

A Profile Likelihood Ratio (not cut-and-count) method uses all events.

LUX Low-Mass Sensitivity

Another Look at Light WIMPs

LUX 2013 upper limits assumed NO SENSITIVITY to recoils below 3 keVnr. This was not an *analysis* threshold, but an artificial one, a hard cut-off

For example, decreasing this response cutoff from 3 keV to 1 keV provides access to a factor of 1000^* more signal at $M = 6 \text{ GeV/c}^2$.

Aaron Manalaysay

Long Term Future: LZ

Snowmass Projections

32 institutions currently About 190 people

LIP Coimbra (Portugal) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) Shanghai Jiao Tong University (China) University of Sheffield (UK)

LZ = LUX + ZEPLIN

University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley **Brookhaven National Laboratory Brown University** University of California, Davis Fermi National Accelerator Laboratory Kavli Institute for Particle Astrophysics & Cosmology Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority **SLAC National Accelerator Laboratory** Texas A&M Washington University University of Wisconsin Yale University

LZ Meeting at U. of Alabama

LZ: Evolution of LUX and ZEPLIN

Building on experiences gained in both programs, the proposed new experiment will utilize the LUX infrastructure at the Sanford Underground Research Facility to mount a state-of-the-art detector. Highlighted features include:

- LUX water shield and an added liquid scintillator active veto.
- Instrumented "skin" region of peripheral xenon as another veto system.
- Unprecedented levels of Kr removal from Xe.
- Radon suppression during construction, assembly and operations.
- Photomultipliers with ultra-low natural radioactivity.
- Cryogenics and Xe purification systems made external to the main detector in a unique design.
- Fully digital deadtime-less data acquisition and trigger system.

LZ Timeline

Year	Month	Activity
2012	March	LZ (LUX-ZEPLIN) collaboration formed
	May	First Collaboration Meeting
	September	DOE CD-0 for G2 dark matter experiments
2013	November	LZ R&D report submitted
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK Begin long-lead procurements(Xe, PMT, cryostat)
2016	April	DOE CD-2/3b approval, baseline, all fab starts
2017	June	Begin preparations for surface assembly @ SURF
2018	July	Begin underground installation
2019	Feb	Begin commissioning

Scale Up ≈50 in Fiducial Mass

LZ Total mass - 10 T Active Mass - 7 T Fiducial Mass - 5.6 T

LZ Underground at SURF

Years of experience at SURF from LUX

Key Design Points

- ✓ 7 active tonnes of LXe can yield 2 x 10⁻⁴⁸ cm² sensitivity in about three years of running
 ✓ 5.6 tonne fiducial volume, 1000 days
- ✓ Requires all detector systems working together
 - Xe detector with good light collection, reasonable background rejection (ER discrimination) and good signal detection efficiency
 - Sophisticated veto system: skin (outside active Xe region) + scintillator/water allows maximum fiducial volume to be obtained, maximizes use of Xe and substantially increases reliability of background measurements
 - Control backgrounds, both internal (within the Xe) and external from detector components/environment

Design Status Summary

- +Conceptual, and in some cases more advanced design, completed for all aspects of detector
- Conceptual Design Report about to appear on arXiv
- +Acquisition of Xenon started
- +Procurement of PMTs and cryostat started
- +Collaboration wide prototype program underway to guide and validate design
- Backgrounds modeling and validation well underway

Xe TPC Detector

Xe Detector PMTs

✦ R11410-22 3" PMTs for TPC region

- Extensive development program, 50 tubes in hand, benefit from similar development for XENON, PANDA-X and RED
- □ Materials ordered and radioassays started prior to fabrication.
- □ First production tubes early 2016.
- □ Joint US and UK effort
- ✦ R8520-406 1" for skin region
 - □ Considering using 2" or 3" for bottom dome region, recycle tubes from older detectors

Xe Detector Prototyping

Extensive program of prototype development underway

Three general approaches

- Testing in liquid argon, primarily of HV elements, at Yale and soon at LBNL
- Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, Yale-> UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhI
- System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype testing to begin in few months

High Voltage Studies

Wire grid tests ongoing

Prototype of highest E-field region tested in LAr

- Cathode voltage design goal: 200 kV (provides margin)
- ◆ LZ nominal operating goal: 100 kV (~700 V/cm)
- ✦ Feedthrough prototype tested to 200 kV
- Prototype TPC for 100 kg LXe system fabrication starting
- HV prototyping expanding at Berkeley

LZ Calibrations

- + Demonstrated in LUX. Calibrate The Signal and Background Model in situ.
- ✦DD Neutron Generator (Nuclear Recoils)
- Tritiated Methane (Electron Recoils)
- ✦Additional Sources e.g. YBe Source for low energy (Nuclear Recoils)

Extensive Calibration

LUX has led the way to detailed calibrations. LZ will build on this and do more.

Done in LUX and will be done in LZ	Not done in LUX, but will do in LZ
^{83m} Kr (routine, roughly weekly)	Activated Xe (^{129m} Xe and ^{131m} Xe)
Tritiated methane (every few months)	²²⁰ Rn
External radioisotope neutron sources	AmLi
External radioisotope gamma sources	YBe
DD neutron generator(upgraded early next year to shorten pulse)	

Cryostat Vessels

- ✤ UK responsibility
- Low background titanium chosen direction
 SS alternative advanced as backup
- Ti slab for all vessels(and other parts) received and assayed
- Contributes < 0.05 NR+ER counts in fiducial volume in 1,000 days after cuts</p>

Background Modeled

Sensitivity with Competition

Summary

- LUX has the largest kg-days exposure of any xenon TPC, as well as the lowest energy threshold
- Pioneering work with internal calibration sources. Lowenergy NR data agree with MC.
- LUX has provided the most stringent limit on the WIMPnucleon spin-independent interaction cross-section.
- LUX result is in conflict with low-mass WIMP interpretations of signals seen in CoGeNT, CDMS, and elsewhere
- LZ holds the promise to be the ultimate WIMP search experiment. Limited by neutrino-induced `background'
- LZ Project well underway. Procurement of Xe, PMTs and cryostat vessels started. Extensive prototype program.
- LZ benefits from the excellent LUX calibration techniques and understanding of background

Waiting for the Jackpot

Time Progression of Sensitivity

Animation courtesy of Aaron Manalaysay, UC Davis

Current Experiment: LUX

The LUX Collaboration

Richard Gaitskell Simon Fiorucci Samuel Chung Chan **Dongqing Huang** Casey Rhyne Will Taylor James Verbus **Amportal College** Imperial College London Henrique Araujo

Tim Sumner Alastair Currie Adam Bailey Khadeeja Yazdani

Lawrence Berkeley + UC Berkeley

PI. Professor

Research Associate

Graduate Student

PI, Professor

Scientist

Scientist

Postdoc

Senior Scientist

Senior Scientist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Leader of Adv.

Graduate Student

Assistant Professor

Auxiliary Researcher

Senior Researcher

Detectors Grp.

Staff Physicist

PI, Professor

Postdoc

Postdoc

PI, Professor

PI. Professor

Project Scientist

Research Associate

Research Associate

Research Associate

Graduate Student

Graduate Student

Graduate Student

SLAC Nation Accelerator Laboratory

PI, Reader

Professor

Postdoc

Bob Jacobsen Murdock Gilchriese Kevin Lesko Peter Sorensen Victor Gehman Attila Dobi Daniel Hogan Mia Ihm Kate Kamdin Kelsey Oliver-Mallory

Lawrence Livermore

Adam Bernstein

Kareem Kazkaz enardo LIP Coimbra

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Francisco Neves Alexander Lindote Claudio Silva

Dan Akerib Thomas Shutt Kim Palladino Tomasz Biesiadzinski Christina Ignarra Wing To **Rosie Bramante** Wei Ji T.J. Whitis

SD School of Mines

PI, Professor Graduate Student

Xinhua Bai

Doug Tiedt

David Taylor

Robert Webb

Paul Terman

Dave Herner

Ray Gerhard

Jacob Cutter

Rachel Mannino

Mark Hanhardt

Project Engineer Support Scientist

짜 Texas A&M James White

PI, Professor PI. Professor Graduate Student Graduate Student

University at Albany, SUNY

PI, Professor Matthew Szydagis Jeremy Mock Postdoc Steven Young Graduate Student

UC Davis

Mani Tripathi PI, Professor Britt Hollbrook Senior Engineer John Thmpson Development Engineer Senior Machinist **Electronics Engineer** Aaron Manalaysay Postdoc Scott Stephenson Postdoc Graduate Student James Morad Graduate Student Sergey Uvarov Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Susanne Kyre	Engineer
Dean White	Engineer
Carmen Carmona	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Melih Solmaz	Graduate Student

Chamkaur Ghag PI, Lecturer Sally Shaw Graduate Student

Collaboration Meeting, Lead, June 2015

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc Tom Davison Graduate Student Maria Francesca Marzioni Graduate Student

Carter Hall PI. Professor Jon Balajthy Graduate Student **Richard Knoche** Graduate Student

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Dev Ashish Khaitan Graduate Student Mongkol Moongweluwan Graduate Student

University of South Dakota

Dongming Mei

Angela Chiller

Yale

Daniel McKinsey

Ethan Bernard

Markus Horn

Blair Edwards

Kevin O'Sullivan

Scott Hertel

Nicole Larsen

Brian Tennyson

Lucie Tvrznikova

Evan Pease

Chris Chiller

Chao Zhang

PI. Professor Postdoc Graduate Student Graduate Student

PI, Professor Postdoc Postdoc Postdoc Elizabeth Boulton

The LUX detector

•

•250 kg (active), 118 kg (fiducial) of Lxe
•122 photomultiplier tubes (top plus bottom) ~ 7m diameter Water Cerenkov Shield.

48 cm H (gate to cathode) X 47 cm D

active region with 181 V/cm drift field

Two Signal Technique

to make "g₂" Previously 65%, but it is product of absolute yield with is what matters

New Calculation of the g-Factors

2.5

12% efficiency for the detection of a primary scintillation photon Previously 14% quoted

NR Charge and Light Yields

• *in situ* measurements

- No longer relying on LUX AmBe, ²⁵²Cf, or modeling from old data, or extrapolating from results of small test chambers.
- Charge yield Measured down to ~0.8 keVnr. (Previous low 4 keV)
- Data from Deuterium-Deuterium neutron gun. Use S2 to identify double scatters. Determine energy deposition from scattering angle. For S1, S2-derived energy scale.
- Light yield measured down to ~1.2 keVnr. (Previous low 3 keV)

----- NEST 1.0 still too conservative ----- Modified NEST for re-analysis

New modeling

A Profile Likelihood Ratio (not cut-and-count) method uses all events.

LUX Low-Mass Sensitivity

Another Look at Light WIMPs

LUX 2013 upper limits assumed NO SENSITIVITY to recoils below 3 keVnr. This was not an *analysis* threshold, but an artificial one, a hard cut-off

For example, decreasing this response cutoff from 3 keV to 1 keV provides access to a factor of 1000^* more signal at $M = 6 \text{ GeV/c}^2$.

Aaron Manalaysay SUSY2014

Long Term Future: LZ

Snowmass Projections

ins t ons c rrentl Abo t people

LIP Coimbra Port gal MEPhI R ssia Edinb rgh Uni ersit UK Uni ersit of Li erpool UK Imperial College London UK Uni ersit College London UK Uni ersit of O ford UK STFC R therford Appleton Laboratories UK Shanghai Jiao Tong Uni ersit China Uni ersit of Sheffield UK

LZ LUX ZEPLIN

Uni ersit of Alabama Uni ersit at Alban SUNY Berkele Lab LBNL Uni ersit of California Berkele Brookha en Na onal Laborator Bro n Uni ersit Uni ersit of California Da is Fermi Na onal Accelerator Laborator Ka li Ins t te for Par cle Astroph sics Cosmolog La rence Li ermore Na onal Laborator Uni ersit of Mar land Uni ersit of Michigan North estern Uni ersit Uni ersit of Rochester Uni ersit of California Santa Barbara Uni ersit of So th Dakota So th Dakota School of Mines Technolog So th Dakota Science and Technolog A thorit SLAC Na onal Accelerator Laborator Te as A M Washington Uni ersit Uni ersit of Wisconsin Yale Uni ersit

LZ Meeting at U. of Alabama

LZ Timeline

Year	Month	Activity	
	March	LZ LUX ZEPLIN collabora on formed	
	Ma	First Collabora on Mee ng	
	September	DOE CD for G dark ma er e periments	
	No ember LZ R D report s bmi ed J I LZ Project selected in US and UK		
	April	DOE CD a appro al similar in UK	
		Begin long lead proc rements Xe PMT cr ostat	
	April	DOE CD b appro al baseline all fab starts	
	J ne	Begin prepara ons for s rface assembl SURF	
	JI	Begin ndergro nd installa on	
	Feb	Begin commissioning	

Scale Up

in Fid cial Mass

LZ Total mass - 10 T Active Mass - 7 T Fiducial Mass - 5.6 T

LZ Undergro nd at SURF

Years of e perience at SURF from LUX

Key Design Points

- ✓ 7 active tonnes of LXe can yield 2 x 10⁻⁴⁸ cm² sensitivity in about three years of running
 ✓ 5.6 tonne fiducial volume, 1000 days
- ✓ Requires all detector systems working together
 - Xe detector with good light collection, reasonable background rejection (ER discrimination) and good signal detection efficiency
 - Sophisticated veto system: skin (outside active Xe region) + scintillator/water allows maximum fiducial volume to be obtained, maximizes use of Xe and substantially increases reliability of background measurements
 - Control backgrounds, both internal (within the Xe) and external from detector components/environment

Design Status Summary

- +Conceptual, and in some cases more advanced design, completed for all aspects of detector
- Conceptual Design Report about to appear on arXiv
- +Acquisition of Xenon started
- +Procurement of PMTs and cryostat started
- Collaboration wide prototype program underway to guide and validate design
- Backgrounds modeling and validation well underway

Xe TPC Detector

+R

Xe Detector PMTs

PMTs for TPC region

- E tensi e de elopment program t bes in hand benefit from similar de elopment for XENON PANDA X and RED
- □ Materials ordered and radioassa s started prior to fabrica on
- □ First prod c on t bes earl
- □ Joint US and UK effort
- ✦ R for skin region
 - Considering sing or for bo om dome region rec cle t bes from older detectors

Xe Detector Protot ping

Extensive program of prototype development underway

Three general approaches

- Testing in liquid argon, primarily of HV elements, at Yale and soon at LBNL
- Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, Yale-> UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhI
- System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype testing to begin in few months

High Voltage St dies

Wire grid tests ongoing

Protot pe of highest E field region tested in LAr

- ✦ Cathode oltage design goal kV pro ides margin
- ✦LZ nominal opera ng goal kV V cm
- Feedthro gh protot pe tested to kV
- Protot pe TPC for kg LXe s stem fabrica on star ng
- ✦ HV protot ping e panding at Berkele

LZ Calibrations

+ Demonstrated in LUX Calibrate The Signal and Backgro nd Model in situ.

- ✦DD Ne tron Generator N clear Recoils
- ✦Tri ated Methane Electron Recoils
- +Addi onal So rces e g YBe So rce for lo energ N clear Recoils

E tensi e Calibra on

LUX has led the a to detailed calibra ons LZ ill b ild on this and do more

Done in LUX and will be done in LZ	Not done in LUX, but will do in LZ
^m Kr ro ne ro ghl eekl	Ac ated Xe ^m Xe and ^m Xe
Tri ated methane e er fe months	Rn
E ternal radioisotope ne tron so rces	AmLi
E ternal radioisotope gamma so rces	YBe
DD ne tron generator pgraded earl ne t ear to shorten p lse	

Cr ostat Vessels

✦ UK responsibilit

- ✤ Lo backgro nd tani m chosen direc on SS alterna e ad anced as back p
- ✤ Ti slab for all essels and other parts recei ed and assa ed

✦ Contrib tes
NR ER co nts in fid cial ol me in da s after c ts_

Backgro nd Modeled

Sensi it ith Compe on

Waiting for the Jackpot

Time Progression of Sensitivity

Animation courtesy of Aaron Manalaysay, UC Davis

Current Experiment: LUX

The LUX Collaboration

Richard Gaitskell Simon Fiorucci Samuel Chung Chan **Dongqing Huang** Casey Rhyne Will Taylor James Verbus **Amportal College** Imperial College London Henrique Araujo

Tim Sumner Alastair Currie Adam Bailey Khadeeja Yazdani

Lawrence Berkeley + UC Berkeley

PI. Professor

Research Associate

Graduate Student

PI, Professor

Scientist

Scientist

Postdoc

Senior Scientist

Senior Scientist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

PI, Leader of Adv.

Graduate Student

Assistant Professor

Auxiliary Researcher

Senior Researcher

Detectors Grp.

Staff Physicist

PI, Professor

Postdoc

Postdoc

PI, Professor

PI. Professor

Project Scientist

Research Associate

Research Associate

Research Associate

Graduate Student

Graduate Student

Graduate Student

SLAC Nation Accelerator Laboratory

PI, Reader

Professor

Postdoc

Bob Jacobsen Murdock Gilchriese Kevin Lesko Peter Sorensen Victor Gehman Attila Dobi Daniel Hogan Mia Ihm Kate Kamdin Kelsey Oliver-Mallory

Lawrence Livermore

Adam Bernstein

Kareem Kazkaz enardo LIP Coimbra

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Francisco Neves Alexander Lindote Claudio Silva

Dan Akerib Thomas Shutt Kim Palladino Tomasz Biesiadzinski Christina Ignarra Wing To **Rosie Bramante** Wei Ji T.J. Whitis

SD School of Mines

PI, Professor Graduate Student

Xinhua Bai

Doug Tiedt

David Taylor

Robert Webb

Paul Terman

Dave Herner

Ray Gerhard

Jacob Cutter

Rachel Mannino

Mark Hanhardt

Project Engineer Support Scientist

짜 Texas A&M James White

PI, Professor PI. Professor Graduate Student Graduate Student

University at Albany, SUNY

PI, Professor Matthew Szydagis Jeremy Mock Postdoc Steven Young Graduate Student

UC Davis

Mani Tripathi PI, Professor Britt Hollbrook Senior Engineer John Thmpson Development Engineer Senior Machinist **Electronics Engineer** Aaron Manalaysay Postdoc Scott Stephenson Postdoc Graduate Student James Morad Graduate Student Sergey Uvarov Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Susanne Kyre	Engineer
Dean White	Engineer
Carmen Carmona	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Melih Solmaz	Graduate Student

Chamkaur Ghag PI, Lecturer Sally Shaw Graduate Student

Collaboration Meeting, Lead, June 2015

University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc Tom Davison Graduate Student Maria Francesca Marzioni Graduate Student

Carter Hall PI. Professor Jon Balajthy Graduate Student **Richard Knoche** Graduate Student

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Dev Ashish Khaitan Graduate Student Mongkol Moongweluwan Graduate Student

University of South Dakota

Dongming Mei

Angela Chiller

Yale

Daniel McKinsey

Ethan Bernard

Markus Horn

Blair Edwards

Kevin O'Sullivan

Scott Hertel

Nicole Larsen

Brian Tennyson

Lucie Tvrznikova

Evan Pease

Chris Chiller

Chao Zhang

PI. Professor Postdoc Graduate Student Graduate Student

PI, Professor Postdoc Postdoc Postdoc Elizabeth Boulton

The LUX detector

•

•250 kg (active), 118 kg (fiducial) of Lxe
•122 photomultiplier tubes (top plus bottom) ~ 7m diameter Water Cerenkov Shield.

48 cm H (gate to cathode) X 47 cm D

active region with 181 V/cm drift field

Two Signal Technique

to make "g₂" Previously 65%, but it is product of absolute yield with is what matters

New Calculation of the g-Factors

2.5

12% efficiency for the detection of a primary scintillation photon Previously 14% quoted

NR Charge and Light Yields

• *in situ* measurements

- No longer relying on LUX AmBe, ²⁵²Cf, or modeling from old data, or extrapolating from results of small test chambers.
- Charge yield Measured down to ~0.8 keVnr. (Previous low 4 keV)
- Data from Deuterium-Deuterium neutron gun. Use S2 to identify double scatters. Determine energy deposition from scattering angle. For S1, S2-derived energy scale.
- Light yield measured down to ~1.2 keVnr. (Previous low 3 keV)

----- NEST 1.0 still too conservative ----- Modified NEST for re-analysis

New modeling

A Profile Likelihood Ratio (not cut-and-count) method uses all events.

LUX Low-Mass Sensitivity

Another Look at Light WIMPs

LUX 2013 upper limits assumed NO SENSITIVITY to recoils below 3 keVnr. This was not an *analysis* threshold, but an artificial one, a hard cut-off

For example, decreasing this response cutoff from 3 keV to 1 keV provides access to a factor of 1000^* more signal at $M = 6 \text{ GeV/c}^2$.

Aaron Manalaysay SUSY2014

Long Term Future: LZ

Snowmass Projections

ins t ons c rrentl Abo t people

LIP Coimbra Port gal MEPhI R ssia Edinb rgh Uni ersit UK Uni ersit of Li erpool UK Imperial College London UK Uni ersit College London UK Uni ersit of O ford UK STFC R therford Appleton Laboratories UK Shanghai Jiao Tong Uni ersit China Uni ersit of Sheffield UK

LZ LUX ZEPLIN

Uni ersit of Alabama Uni ersit at Alban SUNY Berkele Lab LBNL Uni ersit of California Berkele Brookha en Na onal Laborator Bro n Uni ersit Uni ersit of California Da is Fermi Na onal Accelerator Laborator Ka li Ins t te for Par cle Astroph sics Cosmolog La rence Li ermore Na onal Laborator Uni ersit of Mar land Uni ersit of Michigan North estern Uni ersit Uni ersit of Rochester Uni ersit of California Santa Barbara Uni ersit of So th Dakota So th Dakota School of Mines Technolog So th Dakota Science and Technolog A thorit SLAC Na onal Accelerator Laborator Te as A M Washington Uni ersit Uni ersit of Wisconsin Yale Uni ersit

LZ Meeting at U. of Alabama

LZ Timeline

Year	Month	Activity
	March	LZ LUX ZEPLIN collabora on formed
	Ma	First Collabora on Mee ng
	September	DOE CD for G dark ma er e periments
	No ember	LZ R D report s bmi ed
	JI	LZ Project selected in US and UK
	April	DOE CD a appro al similar in UK Begin long lead proc rements Xe PMT cr ostat
	April	DOE CD b appro al baseline all fab starts
	J ne	Begin prepara ons for s rface assembl SURF
	JI	Begin ndergro nd installa on
	Feb	Begin commissioning

Scale Up

in Fid cial Mass

LZ Total mass - 10 T Active Mass - 7 T Fiducial Mass - 5.6 T

LZ Undergro nd at SURF

Years of e perience at SURF from LUX

Key Design Points

- ✓ 7 active tonnes of LXe can yield 2 x 10⁻⁴⁸ cm² sensitivity in about three years of running
 ✓ 5.6 tonne fiducial volume, 1000 days
- ✓ Requires all detector systems working together
 - Xe detector with good light collection, reasonable background rejection (ER discrimination) and good signal detection efficiency
 - Sophisticated veto system: skin (outside active Xe region) + scintillator/water allows maximum fiducial volume to be obtained, maximizes use of Xe and substantially increases reliability of background measurements
 - Control backgrounds, both internal (within the Xe) and external from detector components/environment

Design Status Summary

- +Conceptual, and in some cases more advanced design, completed for all aspects of detector
- Conceptual Design Report about to appear on arXiv
- +Acquisition of Xenon started
- +Procurement of PMTs and cryostat started
- Collaboration wide prototype program underway to guide and validate design
- Backgrounds modeling and validation well underway

Xe TPC Detector

+R

Xe Detector PMTs

PMTs for TPC region

- E tensi e de elopment program t bes in hand benefit from similar de elopment for XENON PANDA X and RED
- □ Materials ordered and radioassa s started prior to fabrica on
- □ First prod c on t bes earl
- □ Joint US and UK effort
- ✦ R for skin region
 - Considering sing or for bo om dome region rec cle t bes from older detectors

Xe Detector Protot ping

Extensive program of prototype development underway

Three general approaches

- Testing in liquid argon, primarily of HV elements, at Yale and soon at LBNL
- Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, Yale-> UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhI
- System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype testing to begin in few months

High Voltage St dies

Wire grid tests ongoing

Protot pe of highest E field region tested in LAr

- ✦ Cathode oltage design goal kV pro ides margin
- ✦LZ nominal opera ng goal kV V cm
- Feedthro gh protot pe tested to kV
- Protot pe TPC for kg LXe s stem fabrica on star ng
- ✦ HV protot ping e panding at Berkele

LZ Calibrations

+ Demonstrated in LUX Calibrate The Signal and Backgro nd Model in situ.

- ✦DD Ne tron Generator N clear Recoils
- ✦Tri ated Methane Electron Recoils
- ✦Addi onal So rces e g YBe So rce for lo energ N clear Recoils

E tensi e Calibra on

LUX has led the a to detailed calibra ons LZ ill b ild on this and do more

Done in LUX and will be done in LZ	Not done in LUX, but will do in LZ
^m Kr ro ne ro ghl eekl	Ac ated Xe ^m Xe and ^m Xe
Tri ated methane e er fe months	Rn
E ternal radioisotope ne tron so rces	AmLi
E ternal radioisotope gamma so rces	YBe
DD ne tron generator pgraded earl ne t ear to shorten p lse	

Cr ostat Vessels

✦ UK responsibilit

- ✤ Lo backgro nd tani m chosen direc on SS alterna e ad anced as back p
- ✤ Ti slab for all essels and other parts recei ed and assa ed

✦ Contrib tes
NR ER co nts in fid cial ol me in da safter c ts_

Backgro nd Modeled

Sensi it ith Compe on

Waiting for the Jackpot

