

The LUX-ZEPLIN Experiment

Ben Krikler for the LZ collaboration

1st July 2019 at PASCOS 2019

1. Overview of LZ

2. Backgrounds and Sensitivity

3. Construction Status

Direct detection of Dark Matter

- If DM is a particle with a finite probability to scatter of SM particles...
- ... can we observe such interactions directly?
- Current limits for 30 GeV WIMP, spin-independent at 4x10⁻⁴⁷ cm² by XENON1T
- Good sensitivity requires:
 - Large mass detector
 - Backgrounds suppressed to an even lower rate

Two-phase xenon TPC

- Scattering off atom in liquid xenon
 - Recoil from nucleus (NR) or atomic electrons (ER)
- Produces light and free electrons / ions
 - Prompt light detected: "S1"
 - Electric field drifts electrons
- Charge reaches gas xenon
 - Amplification
 - Second delayed light: "S2"
- From S1 and S2:
 - Relative time: depth in detector
 - Transverse position
 - Type of interaction: ER vs NR
- Xenon naturally radio-pure

The LZ experiment

- Two-phase xenon TPC:
 - 7 tons liquid xenon
 - 5.6 t of fiducial volume
 - 50 kV cathode Scintillator
 494 x 3" PMTs in TPC
- Veto and shield systems
- Same water tank as LUX

LZ at SURF

- Sanford Underground Research Facility (SURF)
 - Originally a gold mine
 - Previously home to Davis neutrino experiment
 - Soon to be home to DUNE
- 1 mile underground (4850 feet)

By Huebi - https://commons.wikimedia.org/ w/index.php?curid=1141214

Backgrounds and Sensitivity

In particle physics, if it walks like a duck, and it quacks like a duck, it's probably still not a duck

https://www.moogsoft.com/blog/aiops/understanding-machine-learning-aiops-part-2

In particle physics, if it walks like a duck, and it quacks like a duck, it's probably still not a duck

https://www.moogsoft.com/blog/aiops/understanding-machine-learning-aiops-part-2

Sources of Background

- External sources
- Cosmogenics
- Radiation from experiment cavern
- Other new physics (e.g. neutrinos)
- Internal sources
- Radioactive materials in detector components
- Emanation of Radon from detector components
- Radioactive dust on surfaces
- Contaminants in the xenon

NOT DUCKS

Mitigating External Backgrounds

- Go deep underground
 - \circ 4300 m.w.e. underground at SURF in Lead, SD
 - Measure rock backgrounds: <u>ArXiv:1904.02112</u>
- Add three layers of outer shields:
 - Instrumented xenon skin around TPC

⇒ gamma ray scatters

- Gadolinium-doped liquid scintillator tank
 - \Rightarrow neutron tagging
- Passive high-purity water

Mitigating Internal Backgrounds

By User:Tosaka - File:Decay chain(4n+2, Uranium series).PNG, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=33293646

- Detector materials
 - Radio-assay campaign
 - Gamma-screening, ICPMS, NAA
 - Screening Gd-LS: <u>ArXiv: 1808.05595</u>
- Radon emanation
 - Four screening sites and two portable assays
 - \circ Target Rn activity: 2 µBq/kg
 - Rn removal system: reduces Rn from warm components by > x10: <u>doi:10.1016/j.nima.2018.06.076</u>
- Radon daughters and dust on surfaces
 - TPC assembly in Rn-reduced cleanroom
 - Dust < 500 ng/cm³ on all LXe wetted surfaces
 - \circ Rn-daughter plate-out on TPC walls < 0.5 mBq/m²
- Xenon contaminants ⁸⁵Kr, ³⁹Ar
 - Charcoal chromatography @ SLAC
 - Final ^{nat}Kr/Xe 0.015 ppt

Total backgrounds

- Assumes 1000 live days (full LZ run)
- Radon in the xenon dominates ER counts
- Coherent atmospheric neutrino scattering dominates NR
- Sub-dominant NR backgrounds
 - Alpha-n on PTFE from Pb-210
 - Ions reconstructed in fiducial volume

Background source	ER counts	NR counts
Detector Components	9	0.07
Surface contamination	40	0.39
Xenon Contamination	819	0
Laboratory and cosmogenics	5	0.06
Physics	322	0.51
Total	1195	1.03
Total after 99.5% ER rejection and 50% NR efficiency	5.97	0.52

From "Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment" <u>ArXiv:1802.06039</u>

Sensitivity estimates

For WIMP of 40 GeV/c²

- Excluded at 90% C.L.: 1.6x10⁻⁴⁸ cm²
- 3σ discovery: 3.8x10⁻⁴⁸ cm²
- 5σ discovery:
 6.7x10⁻⁴⁸ cm²

From "Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment" <u>ArXiv:1802.06039</u>

Construction, timeline, and flashy photos

Cryostat preparation

- Intense R&D program found low activity titanium <u>DOI:</u> <u>10.1016/j.astropartphys.2017.09.002</u>
- Fabricated by Loterios, Italy
- Delivered to SURF May 2018
- Outer cryostat vessel (OCV):
 Moved underground
- Inner cryostat vessel (ICV):
 - PTFE skin tiling of inner walls complete

LXe PMTs

Many PMTs:

- 253 x 3" for top array
- 241 x 3" for bottom array
- 93 x1" and 38 x2" PMTs for top / bottom skin

Top and bottom arrays completed

Assembled within the PMT Array Lifting And Commissioning Enclosure (PALACE)

- Reduced dust and radon air
- Shipping enclosure
- Light-shielded electrical testing

TPC Field Cage

- 57 titanium field shaping rings
- PTFE for reflectivity and stability
- Completed December 2018
- Deionising tower to remove dust from PTFE

TPC - wire grids

- Semi-automated loom to weave stainless steel wire
- Final grids (+ 2 full-size prototypes) completed (1.5 m diameter)
- Delivered to SURF

https://www.youtube.com/watch?v=yNycDcMQksg8

Outer Detector

- Acrylic vessels:
 - Side tanks (4) underground inside water tank
 - Top/bottom tank fabrication almost finished
- All outer detector PMTs in-hand:
 - Testing at IBS (Korea) complete
 - Mock PMT ladder installed inside water tank
- Gd-Liquid Scintillator production:
 - Equipment being installed at BNL

The Collaboration

- 1. IBS-CUP (Korea)
- 2. LIP Coimbra (Portugal)
- 3. MEPhI (Russia)
- 4. Imperial College London (UK)
- 5. Royal Holloway University of London (UK)
- 6. STFC Rutherford Appleton Lab (UK)
- 7. University College London (UK)
- 8. University of Bristol (UK)
- 9. University of Edinburgh (UK)
- 10. University of Liverpool (UK)
- 11. University of Oxford (UK)
- 12. University of Sheffield (UK)

- 13. Black Hill State University (US)
- 14. Brandeis University (US)
- 15. Brookhaven National Lab (US)
- 16. Brown University (US)
- 17. Fermi National Accelerator Lab (US)
- 18. Lawrence Berkeley National Lab (US)
- 19. Lawrence Livermore National Lab (US)
- 20. Northwestern University (US)
- 21. Pennsylvania State University (US)
- 22. SLAC National Accelerator Lab (US)
- 23. South Dakota School of Mines and Technology (US)
- 24. South Dakota Science and Technology Authority (US)

- 25. Texas A&M University (US)
- 26. University at Albany (US)
- 27. University of Alabama (US)
- 28. University of California, Berkeley (US)
- 29. University of California, Davis (US)
- 30. University of California, Santa Barbara (US)
- 31. University of Maryland (US)
- 32. University of Massachusetts (US)
- 33. University of Michigan (US)
- 34. University of Rochester (US)
- 35. University of South Dakota (US)
- 36. University of Wisconsin Madison (US)
- 37. Yale University (US)

Timeline

Summary

- Presented the LUX-ZEPLIN experiment
 - Based on two-phase xenon TPC
 - 5.6 fiducial tons of liquid xenon

• World-leading results expected, e.g. for 40 GeV WIMPs

- \circ 90% C.L. of exclusion at 1.6x10⁻⁴⁸ cm²
- \sim 3 σ discovery at 3.8x10⁻⁴⁸ cm²

Broad non-WIMP DM program

- <u>Talk: "A Hunt for Hidden Photons with the</u> <u>LZ Experiment" Mrs. Athoy NILIMA 15:10</u> <u>Thursday</u>
- LZ has nearly completed construction
 - Cryostat now underground; PMT arrays all assembled; TPC wire grids delivered
- Operations to begin in summer next year

Thank you

Note: no ducks were harmed in the making of this talk

Sensitivity

From "Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment" <u>ArXiv:1802.06039</u>

Detailed background table

From "Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment" <u>ArXiv:1802.06039</u>

Background Source	Mass	$^{238}U_e$	238 U _l	$^{232}Th_e$	232 Th _l	⁶⁰ Co	40 K	n/yr	ER	NR
1993	(kg)	mBq/kg						(cts)	(cts)	
Detector Components										
PMT systems	308	31.2	5.20	2.32	2.29	1.46	18.6	248	2.82	0.027
TPC systems	373	3.28	1.01	0.84	0.76	2.58	7.80	79.9	4.33	0.022
Cryostat	2778	2.88	0.63	0.48	0.51	0.31	2.62	323	1.27	0.018
Outer detector (OD)	22950	6.13	4.74	3.78	3.71	0.33	13.8	8061	0.62	0.001
All else	358	3.61	1.25	0.55	0.65	1.31	2.64	39.1	0.11	0.003
						subtotal				0.07
Surface Contamination	ı									
Dust (intrinsic activity, 50	00 ng/cn	n^2)							0.2	0.05
Plate-out (PTFE panels,	50 nBq/	cm^2)							-	0.05
210 Bi mobility (0.1 µBq/k	g LXe)								40.0	-
Ion misreconstruction (50	Ion misreconstruction (50 nBg/cm^2)							-	0.16	
210 Pb (in bulk PTFE, 10	mBq/kg	PTFE)							-	0.12
							SI	ubtotal	40	0.39
Xenon contaminants										
222 Rn (1.81 µBq/kg)									681	-
220 Rn (0.09 µBq/kg)									111	2
nat Kr (0.015 ppt g/g)								24.5		
nat Ar (0.45 ppb g/g)								2.5	-	
							S	ubtotal	819	0
Laboratory and Cosm	ogenics									
Laboratory rock walls	0								4.6	0.00
Muon induced neutrons									-	0.06
Cosmogenic activation									0.2	2
							SI	ubtotal	5	0.06
Physics									9 	
136 Xe $2\nu\beta\beta$									67	
Solar neutrinos: $pp+^{7}Be+$	$-^{13}N$								255	-
Diffuse supernova neutrin	os (DSN)							1411	0.05
Atmospheric neutrinos (A	.tm)								-	0.46
							s	ubtotal	322	0.51
Total									1195	1.03
Total (with 99.5% ER dis	criminat	ion, 50%	6 NR eff	iciency)					5.97	0.52
Sum of ER and NR in	Sum of ER and NR in LZ for 1000 days, 5.6 tonne FV, with all analysis cuts							6.	6.49	