THE LUX-ZEPLIN DARK MATTER EXPERIMENT

David Woodward, University of Sheffield

On behalf of the LZ collaboration

12TH INTERNATIONAL WORKSHOP DARK SIDE OF THE UNIVERSE University of Bergen, 25-29 July

LZ collaboration

- ♦ Brookhaven National Laboratory
- ♦ Brown University
- ♦ Center for Underground Physics, Korea
- ♦ Fermi National Accelerator Laboratory
- ♦ Imperial College London
- ♦ LIP Coimbra, Portugal
- ♦ Lawrence Berkley National Laboratory
- ♦ Lawrence Livermore National Laboratory
- ♦ MEPhl-Moscow, Russia
- ♦ Northwestern University
- ♦ Shanghai Jiao Tong University, China
- ♦ SLAC National Accelerator Laboratory
- ♦ South Dakota School of Mines and Technology
- ♦ South Dakota Science and Technology Authority
- ♦ STFC Rutherford Appleton Laboratory
- ♦ Texas A&M University
- ♦ University at Albany, SUNY
- ♦ University College London
- ♦ University of Alabama
- ♦ University of California, Berkley
- ♦ University of California, Davis
- ♦ University of California, Santa Barbara
- ♦ University of Edinburgh

- ♦ University of Liverpool
- ♦ University of Maryland
- \diamond University of Michigan
- ♦ University of Oxford
- ♦ University of Rochester
- ♦ University of Sheffield
- ♦ University of South Dakota
- \diamond University of Wisconsin-Madison
- ♦ Washington University in St. Louis
- ♦ Yale University

Heat

How to catch a WIMP

- Direct detection is based on the observation of a WIMP scattering from a target nucleus.
- ♦ One of the key requirements is to distinguish nuclear recoils (signal) from electron recoils (background e^{\pm} , γ).
- ♦ Low energy thresholds maximise sensitivity to WIMP-induced nuclear recoils ~ few keV.
- ♦ Low background requirements; underground operation, radio-pure detector materials etc.

Ionisation

Two-phase liquid/gas noble detectors LZ, LUX, ZEPLIN, XENON, Panda-X, Darkside, WARP, ArDM Challenge: search for events that are both rare (<< 1 event/kg/year) and involve small energy transfers (< 100 keV).

DSU 2016, University of Bergen

Sanford Underground Research Facility (SURF)

LZ schematic

Two-phase xenon TPC

Electrons

S

S1 prompt scintillation:
♦ UV photons ~ 175 nm.
S2 delayed ionisation:

- \diamond lonisation electrons drift
- under E-field;
- Electroluminesce in the gas phase.

Incoming Particle

- S1 + S2 event-by-event:
- 3D position reconstruction (mm vertex resolution) - identify multiple scatter events, fiducialise WIMP target;
- Identification of background electron recoils based on ratio of light/charge (> 99.5% discrimination, 50% nuclear recoil acceptance).

253 + 241 low background PMTs (top + bottom)

Total xenon mass – 10 tonnes Active xenon mass – 7 tonnes Fiducial xenon mass – 5.6 tonnes

indicates depth

S1

E-Field

Outgoing

Particle

Combined S1 + S2 signals

LUX calibration data – plotting S1 vs *log*₁₀(S2/S1) gives visual separation. Blue line indicates median of the ER band and red line indicates median of the NR band. The dashed lines indicate 80% population contours.

Background control strategy

- Underground operation within an instrumented water tank to mitigate cosmic backgrounds;
- ♦ Self-shielding in high-density target material;
- Material-screening to select low radioactivity components (table below);
- Purification of liquid xenon; removal of radioactive noble gases (Kr, Ar, Rn) and electronegative contaminants.

Technique	Isotopes	Sensitivity
HPGe	238 U, 235 U, 232 Th chains, 40 K, 60 Co, 137 Cs, any γ -emitter	50 ppt U, 100 ppt Th
ICP-MS	²³⁸ U, ²³⁵ U, ²³² Th (top of chain)	10 ⁻¹² g/g
NAA	²³⁸ U, ²³⁵ U, ²³² Th (top of chain), K	10 ⁻¹² g/g to 10 ⁻¹⁴ g/g
Radon Emanation	²²² Rn, ²²⁰ Rn	0.1 mBq

Boulby Underground Germanium Suite (BUGS) in the low background counting facility of the new Boulby Underground Laboratory

Background simulations

- GEANT4-based simulation package LUXSIM [arXiv: 1111.2074] is used to simulate radiogenic, cosmogenic and laboratory backgrounds.
- Detector response (S1 and S2 signals) simulated using NEST [arXiv:1307.6601].
- Accurate implementation of LZ geometry according to engineering designs.
- Event generators used as inputs; gammas from GEANT4 libraries, neutron spectra from SOURCES4A code, muons according to spectra obtained with MUSIC and MUSUN codes [arXiv:0810.4635].

DSU 2016, University of Bergen

July 25, 2016

DSU 2016, University of Bergen

ROI + Single scatter

ROI + Single scatter + vetoes

Other backgrounds

ER: Neutrino-electron scattering from solar pp neutrinos, *2vbb* from ¹³⁶Xe.
 NR: Coherent-neutrino scattering from ⁸B solar neutrinos, atmospheric and diffuse supernova neutrinos.

WIMP-nucleon SI scattering

LZ Timeline

Year	Month	Activity	
2012	March	LZ (LUX-ZEPLIN) collaboration formed	
	September	DOE CD-0 for G2 dark matter experiments	
2013	November	LZ R&D report submitted	
2014	July	LZ Project selected in US and UK	
2015	April	DOE CD-1/3a approval, similar in UK Begin long-lead procurements(Xe, PMT, cryostat)	
2016	August	DOE CD-2/3b approval expected	
2017	March	LUX removed from underground	
	August	Beneficial occupancy surface assembly building	
2018	June	Beneficial occupancy for underground installation	
2019		Underground installation	
2020	April	Start operations	
2025+		Planning on 5+ years of operations	

Backup slides

Nuclear recoils in xenon

Branching (----) sketched for nuclear recoils

Diagram by T Shutt

Electron recoils in xenon

Branching (----) sketched for electron recoils

Diagram by T Shutt

Spin-dependent sensitivity

WIMP-proton SD scattering

WIMP-neutron SD scattering

July 25, 2016

Axion sensitivity

