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● Searching for very low-E nuclear recoils (NR)
● Prompt scintillation (S1) plus free electrons
● Electric field extracts electrons into gas
● Electroluminescence light (S2)
● 3D reconstruction with S2 (XY) and

S1-S2 delay (Z): fiducialisation
● Background discrimination: S2/S1 ratio 

different for ER (bkg) and NR (signal)
● Photomultipliers for 175 nm photon detection
● Require coincident photons to avoid spurious 

S1s from dark counts (DCs)

Direct dark matter detection in LXe TPCs

Photons

(e.g. a 
WIMP)
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Photomultiplier tubes

The current choice for LXe TPCs:

● Hamamatsu R11410
● 3-inch quartz window
● Quantum Efficiency: 

○ ~30% at 175nm

● Low dark count rate
○ ~O(10)Hz at LXe temperatures

● Low radioactivity: 
○ ~mBq/PMT in U/Th (late)

Hamamatsu R11410-22

LZ Technical Design Report - arXiv:1703.09144
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VUV photon detection process
● Ideal case

○ Photon impact on photocathode, photoelectron produced, drift to surface of photocathode 
and emitted (Quantum Efficiency)

○ Photoelectron accelerated towards first dynode, collision emits more electrons, accelerated 
to following dynodes, etc.

○ Finally, electron cloud arrives at anode, where it is read out.
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● Double photoelectron emission
○ VUV ~ 7eV photons
○ Can knock second electron
○ Signal can be twice as large
○ ~20% probability
○ Key for linearity, energy resolution
○ QEDC ≠ QEP

Faham, C. H. et al - arXiv:1506.08748
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PMT characterisation 
at Imperial

● LN2-cooled cryostat for 7 PMTs
● PMTs in 2.5 bar(a) N2
● Illuminated by GXe scintillation 

cell through MgF2 viewports
● Fibre-coupled blue LED
● Temperature control (-97.5

±0.1)℃
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1 photon = 2 photoelectronsCharacterisation of R11410-22

● Operate PMTs at gain = 5·106

● Focus first on extracting DPE fraction 
in VUV, main difference wrt blue 
response

● Fit SPE and DPE with double gaussian 
(μ, σ ; 2μ, √2σ)

● Average ~22% DPE fraction over 35 
PMTs at low temperature

● Not modelling undersized pulses, 
develop better model to include them 

8
Brais López Paredes, Imperial College London B. López Paredes et al. - arXiv:1801.01597



Characterisation of R11410-22

● Operate PMTs at gain = 5·106

● Focus first on extracting DPE fraction 
in VUV, main difference wrt blue 
response

● Fit SPE and DPE with double gaussian 
(μ, σ ; 2μ, √2σ)

● Average ~22% DPE fraction over 35 
PMTs at low temperature

● Estimate double photoelectron 
emission fraction from QE measured 
at factory 9

Brais López Paredes, Imperial College London

Probability of 1 photon = 2 photoelectrons

B. López Paredes et al. - arXiv:1801.01597



More realistic model of single photon response
● First dynode hits: 

○ Early pulses
○ Reduced gain

● Second dynode collection: 
○ Early pulses
○ Slightly reduced gain

● Elastic scattering:
○ Delayed pulses
○ Nominal gain

● Inelastic scattering
○ Delayed pulses
○ Charge loss 10



Characterisation of R11410-22 - high gain

● Aim to observe undersized signals and understand the distribution
○ Contribution to photon detection efficiency in a real detector

● First dynode hits: ~1/14 size of SPE
● Measurement at ~ 1-3·107 gain at ambient and low temperature

○ Temperature dependence → long stabilisation period

● Blue and VUV measurements
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Characterisation of R11410-22 - high gain
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Blue, -97.5℃ VUV, -97.5℃



Exploiting DPE effect
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● Double photoelectron emission:
○ Improve signal efficiency
○ Only VUV produces DPE with 

significant probability

● LUX analysis: 
○ 2phd→1phd

● LZ simulation: 
○ 3phd→2phd

N. Marangou et al. - arXiv:1907.06272

○ Low chance of large area dark count
○ Optimise minimum DPE area (signal) 

to lower coincidence threshold
1 photon = 2 photoelectrons
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14
Brais López Paredes, Imperial College London

● Double photoelectron emission:
○ Improve signal efficiency
○ Only VUV produces DPE with 

significant probability

N. Marangou et al. - arXiv:1907.06272

○ Low chance of large area dark count
○ Optimise minimum DPE area (signal) 

to lower coincidence threshold

● Undersized pulses:
○ Properly model single photon 

response
○ Better understand efficiency
○ (Signal in noise pedestal and 

valley)



Lowering the scintillation threshold in 

● LUX improved  mass reach from 4 
GeV to 2.5 GeV

● Cross section limit better by an 
order of magnitude at 4GeV

● Optimise cut on single-photon S1 
pulse areas associated to S2s

○ Efficiency improvement at low 
energies↔masses

○ Demonstrated first on tritium ER 
calibration

N. Marangou et al. - arXiv:1907.06272

Any 2 photons per S1

1 DPE photon per S1
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  Lowering the LZ threshold

● Preliminary simulation study
● Following a similar strategy to LUX
● Nominal analysis requires a 3-fold S1

(3 phd in different PMTs within 150 ns)
○ Avoids fake S1 from random DC coincidence

● Lower to 2-fold, but require at least 1phd 
to be DPE, use Xe scintillation timing

○ Optimise pulse size and timing to maximise 
significance

● Modest improvement at low WIMP 
mass, but doubles 8B CE𝜈NS rate

PRELIMINARY
LZ Simulation
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Conclusions

● Photomultiplier response to single VUV photons  not straightforward
● Good understanding and modelling needed for rare event searches
● Not only an improvement in calibration
● Response to signal (VUV) light different from dark count pulses
● Can use DPE effect to recover population of low energy events

○ Lower LXe-TPC detector threshold to search for very low energy interactions
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Backup
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Quantum Efficiency

Photon counting vs DC current measurement
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𝜇1

𝜇 = (1+DPE)·𝜇1

QEP must be used when 
doing photon counting in 
the VUV



Characterisation of R11410-22 - high gain

~1/14 of 
nominal gain

Log-log scale

SPE

20
Brais López Paredes, Imperial College London



Reconstructing PMT parameters

● Given DPE, hard to disentangle 
secondary effects

○ DPE+inelastic scattering, second 
dynode collection, etc

● Electronics simulation, variation 
of parameters

● First Dynode Hits: 8%
● Double Photoelectron Emission: 

18%
● (~20% wrt SPE+DPE)
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LZ signal efficiency at 2 and 3 fold

PRELIMINARY
LZ Simulation
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● 2 fold analysis overtakes 
nominal at low masses



Modelling inelastic scattering

Model as poisson with a fraction of the 
SPE mean (f = charge loss).

Can approximate quite well with a 
gaussian as shown.

First dynode is the main contribution to 
the width.
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Modelling dy1 inelastic scattering

Poisson((1-f Q loss)·μSPE)~Gaus


