Development of Internal Calibration Source Injection Hardware for LZ

Chris Nedlik

Dec 11, 2018 CPAD Instrumentation Frontier Workshop

Self-Shielding

- High density (and high Z) in LXe means particles and radiation don't travel very far
- Great for rejecting background events in large detectors
- Makes calibration with an external source difficult for large detectors

ENDF/B-VII.1 library.

M. J. Berger et al., XCOM: Photon Cross Section Database (version 1.5) (2010), National Institute of Standards and Technology, 100 Bureau Drive, Stop 1070, Gaithersburg, MD 20899-1070.

Self-Shielding in LZ

- LZ TPC ~1.5 meters in diameter and height
- Calibration sources must be injected directly into the liquid volume

Source Injection Example in LUX: ^{83m}Kr

- LUX has demonstrated internal calibration source injection with a variety of radioisotopes
- GXe flow carries calibration isotopes from generator into circulation, from circulation to TPC
- Noble elements like ^{83m}Kr pass freely through the getter

Demonstration of mixing with Kr83m

A prototype of the LZ source injection system has been constructed and is currently being tested at UMass Amherst

Goals:

- Refine injection system and generator design, and fabrication techniques
- Develop new injection procedures for better precision and accuracy
- Practice performing injections with the prototype before construction of the LZ source injection system is scheduled to begin

Internal Calibration Sources

Source	Туре	Energy	Half Life	Purpose
^{131m} Xe	Internal conversion	164 keV	11.8 d	3D efficiencies and gains & 3D position correction
^{83m} Kr	Internal conversion	41.5 keV	1.8 h	
²²⁰ Rn & (Rn Daughters)	Alpha(s) & (Betas and Gammas)	several high energy alphas (~7000 keV) and betas	10.6 h	Skin calibration & Material surface physics
ЗН	Beta	18.6 keV endpoint	~days long purification timescale (12.3 y)	ER energy scale & discrimination
¹⁴ C	Beta	156 keV endpoint	~days long purification timescale (5,780 y)	

Generator Materials for Injected Calibration Sources

Electroplated ²²⁸Th on platinum (commercial source)

Passive matrix of anhydrous sodium phosphate dosed with ¹³¹I solution within gelatin capsule

Activated charcoal dosed with ⁸³Rb aqueous solution

 228 Th $\rightarrow ^{224}$ Ra $\rightarrow ^{220}$ Rn

 131 I \rightarrow 131m Xe

Flow-through Generator Design

- Source volume enclosed by sintered-nickel filters, valves
- Generators all have same overall length and panel fittings interchangeable on panel
- Source is attached to VCR cap for easy installation and removal in ⁸³Kr and ^{131m}Xe generators

UMass LXe Detector

- Single phase ('S1 only') LXe detector
- ~1 kg LXe between PMT faces
- Constant GXe recirculation and purification with getter as in LZ

UMass LXe Detector Features

- Monolithic VUV-reflective PTFE walled LXe volume
- Temperature monitoring and capacitive liquid level sensing inside cryostat

Complete UMass System

Circulation and Injection System

- Injection outlet meets circulation upstream of heated getter as in LZ
- As simple as possible circulation path

Getter **To Condenser From Detector**

Circulation Panel

Prototype LZ Injection Panel

Prototype LZ Source Injection System

Injection procedure:

- GXe carrier moves calibration isotopes from generator to isolated dose volume
- Dose volume is opened and flushed into circulation with GXe carrier
- Precise dosing achieved with combination of mass flow and pressure measurements
- Injections will be fully automated

Summary and Future

- Self shielding in large liquid noble detectors requires injection of calibration isotopes directly into the liquid volume
- Internal source injection has been employed successfully in LUX and other similar experiments
- At UMass Amherst, we are drawing from past experience to refine the injection system design and the procedures for internal source injection in preparation for LZ
- Thorough testing of the LZ injection system prototype will be completed before the first injections in LZ are required

Extra Slides

Energy corrections with ^{83m}Kr in LUX

^{83m}Kr Events Selected in Analysis:

arxiv:1708.02566

arxiv:1708.02566

LXe TPC Operating Principle

- Interaction in LXe produces:
 - Prompt scintillation photons (S1) from de-excitation of molecular dimer Xe*₂.
 - Free electrons
- Electrons drifted out of liquid, produce electroluminescence photons in GXe (S2)
- Allows precise vertex location
- Discrimination between nuclear and electron recoils by relative S1 S2 size.

The LZ Experiment

