Aaron Manalaysay UCDAVIS UNIVERSITY OF CALIFORNIA

for the LZ collaboration

13th International Workshop on the Dark Side of the Universe KAIST Munji Campus, Daejeon, Korea 10 July 2017

LUX-ZEPLIN

A direct-detection search, looking primarily (but not only) for WIMP dark matter with liquid xenon

LZ collaboration, March 2017 36 institutions

250 scientists, engineers, and technicians

- 1) IBS Center for Underground Physics (South Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) STFC Rutherford Appleton Lab (UK)
- 6) University College London (UK)
- 7) University of Bristol (UK)
- 8) University of Edinburgh (UK)
- 9) University of Liverpool (UK)
- 10) University of Oxford (UK)
- 11) University of Sheffield (UK)
- 12) Black Hill State University (US)
- 13) Brookhaven National Lab (US)
- 14) Brown University (US)
- 15) Fermi National Accelerator Lab (US)

- 16) Lawrence Berkeley National Lab (US)
- 17) Lawrence Livermore National Lab (US)
- 18) Northwestern University (US)
- 19) Pennsylvania State University (US)
- 20) SLAC National Accelerator Lab (US)
- 21) South Dakota School of Mines and Technology (US)
- 22) South Dakota Science and Technology Authority (US)
- 23) Texas A&M University (US)
- 24) University at Albany (US)
- 25) University of Alabama (US)
- 26) University of California, Berkeley (US)
- 27) University of California, Davis (US)
- 28) University of California, Santa Barbara (US)
- 29) University of Maryland (US)
- 30) University of Massachusetts (US)

- 31) University of Michigan (US)
- 32) University of Rochester (US)
- 33) University of South Dakota (US)
- 34) University of Wisconsin Madison (US)
- 35) Washington University in St. Louis (US)
- 36) Yale University (US)

Why use liquid xenon?

A. Manalaysay UCDAVIS

4

Why use liquid xenon?

Large signal

- Scalar WIMP-nucleus interactions feature an A^2 dependence on the scattering rate.
- Natural xenon contains ~50% odd isotopes, giving high sensitivity to spin-coupled interactions

A. Manalaysay UCDAVIS

Why use liquid xenon?

Low background

- 1. Easily scalable to large size
 - 2. 3-D localization of events
- 3. 1 and 2 permit an ultra-lowbackground inner region to be defined.

Moore's Law

7

Dark Matter Searches: Past, Present & Future

Dark Matter Searches: Past, Present & Future

Dual-phase time projection chamber (TPC)

- Main target is liquid xenon (180 K).
- Primary scintillation light (S1) emitted from interaction vertex
- Ionized e⁻ drift to the liq. surface; produce prop. light as they travel through gas (S2).
- •S1 and S2 permit:
 - Energy reconstruction
 - 3-D position reconstruction
 - Background rejection
- Details in our Technical Design Report: arXiv/1703.09144

WIMPs: expected signal

- Majority of BG is from electronic recoils (ER).
- WIMPs detected via nuclear recoils (NR).
- ER and NR have different S1 / S2 ratio.

- Shape of observed spectrum gives info on WIMP mass.
- Low mass sensitivity affected by NR from ⁸B solar neutrinos (7±3 events in 1000d).

Sanford Underground Research Facility

•LZ: factor of ~50 larger fiducial than LUX

LUX

(inner can)

(See talk by

L. Tvrznikova)

Lower backgrounds

LZ (inner can)

A. Manalaysay L

12

LZ

TPC

Z

Photomultiplier Tubes

Hamamatsu

R5912

8 inch

Outer detector

- Gd-doped LAB liquid scintillator.
- •Neutron and gamma veto.
- • 4π coverage
- Cutouts for cryogenics, electronics, neutron tubes, HV
- Screener vessel already deployed in LUX water shield, good results.

Backgrounds

ROI + Single scatter

No vetoes

A. Manalaysay UCDAVIS

With vetoes (LXe skin and liquid scint.)

ROI + Single scatter + vetoes

Scientific Reach — Standard WIMPs

Scientific Reach — Axions and ALPs

DM ALPs Solar axions **10**⁻¹⁰ 10⁻⁹ Solar v Si(Li) **CoGeNT EDELWEISS** 10⁻¹¹ DFSZ **CDMS XMASS** Solar v 10⁻¹² **EDELWEISS XENON100** MJD, g_{Ae} യ് 10⁻¹¹ **XENON100** UX 2013 LUX 2013 10⁻¹³ LZ sensitivity KSVZ **10**⁻¹⁴ LZ sensitivity **Red giant** 10⁻¹³ 10⁻¹⁵ 10⁻³ 10⁻⁵ 10⁻² 10⁻⁴ 10⁻¹ 10 m_A [keV/c²] m_A [keV/c²]

Summary

- Noble-liquid TPCs leading the field in WIMP sensitivity
- •LZ is the successor to ZEPLIN and LUX. 7 tonnes LXe (5.6 tonnes fiducial)
- •LZ will reach sensitivity of 2.3x10⁻⁴⁸ cm² for SI WIMP-nucleon interactions. Other dark-matter results expected as well.
- •LZ is at an advanced stage. Construction already begun, planning for first signals in 2019.

Backup

A. Manalaysay UCDAVIS

21

Backgrounds

	Projected counts in 1000d	
Source	ER	NR
Material contamination	6.22	0.07
Contam. in LXe*	916	0.43
Physics backgrounds**	322	0.72
Total (raw)	1240	1.22
Total (99.5% ER rej., 50% NR acc.)	6.2	0.61

* Mostly radon

** Astrophysical neutrinos, $2\nu\beta\beta$ from ¹³⁶Xe