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Outline 

n  Dark matter direct detection with two-phase noble element instruments. 
n  LUX detector. 
n  LUX results: 

o  WIMPs – spin-independent interactions; 
o  WIMPs – spin-dependent interactions; 
o  Axions and axion-like particles (ALPs). 
o  Modulation search. 

n  LZ detector. 
n  Backgrounds 
n  Sensitivity to WIMPs. 
n  Conclusions. 
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Principle of WIMP detection in LXe TPC 
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n  Liquid xenon time 
projection chamber – 
LXe TPC.  

n  S1 – primary 
scintillation. 

n  S2 –secondary 
scintillation, 
proportional to 
ionisation. 

n  Position reconstruction 
based on the light 
pattern in the PMTs 
and delay between S2 
and S1. 



Advantages of LXe 
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n  Good scintillator. 
n  Two-phase -> TPC with good position 

resolution. 
n  Self-shielding. 
n  Good discrimination between electron 

recoils (ERs) and nuclear recoils (NRs). 
n  High atomic mass: spin-independent cross-

section  
n  Presence of even-odd isotopes (odd number 

of neutrons) for spin-dependent studies. 
n  Other physics:  

o  Axion search, 
o  Neutrinoless double-beta decay. 

∝ A2

LZ Collaboration, LZ TDR, 1703.09144v1 [physics.ins-det] 



LUX Collaboration 
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LUX detector 
§  61 top + 61 bottom ultra-low 

background PMTs viewing ~250 kg 
of xenon in the active region (~120 
kg fiducial). 

§  Ultra low background PMTs 

§  Ultra-low background titanium 
cryostat.  

§  Active region defined by high-
reflectivity PTFE walls. 

§  Maximum drift: 50 cm. 
§  Xenon continuously re-circulated to 

maintain purity. 
§  Chromatographic separation reduced 

Kr content. 
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LUX detector 
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LUX detector 

§  4850 ft level at SURF. Muon flux ~6×10-5 m-2 s-1. 
§  Muon veto system and shielding: water tank instrumented with PMTs. 
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LUX calibrations 
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§  83mKr – uniform distribution, 
1.8 hours half-life, weekly. 

§  CH3T (tritiated methane) – 
uniform, removed by 
purification, 2-3 times a year 
(top figure), D. Akerib et al. 
(LUX Collaboration), Phys. 
Rev. D93 (2016) 072009. 

§  D-D – generator (bottom), 
2.45 MeV neutrons, 
collimated, D. Akerib et al. 
(LUX Collaboration), arXiv:
1608.05381 [physics.ins-
det].  



LUX results 
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§  Data after cuts: 332 live days (left). 
§  Limits on spin-independent WIMP-nucleon cross-section (right); two runs 

combined: 2013 – 95 live days, 2015-2016 – 332 live days. Combined exposure 
3.35×104 kg×days. 

§  Limit 1.1×10-46 cm2 at 50 GeV/c2. 
§  Akerib et al. (LUX Collaboration), PRL 118, 021303 (2017). 



Most recent results 

§  Most recent results from leading two-phase Xe experiments. 
§  Plot from Aprile et al (XENON Collaboration). arXiv:1805.12562v1 [astro-ph.CO] 
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Spin dependent interactions 

§  Spin-dependent WIMP-neutron cross-section (left): two Xe isotopes with 
odd number of neutrons. 

§  Spin-dependent WIMP-proton cross-section (right): even number of protons. 
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Axions and axion-like particles (ALPs) 
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§  LUX (2013) excludes gAe > 3.5×10-12  
     (90% CL). 

•  mA < 0.12 eV/c2 (DFSZ model).  
•  mA < 36.6 eV/c2 (KSVZ model).  

§  LUX (2013) excludes 
gAe > 4.2 × 10-13 (90% CL) across the 
range 1-16 keV/c2 in ALP mass.  

Axions ALPs 

PRL 118, 261301 (2017) 
Analysis of 2015-2016 data is in progress. 



Sensitivity to sub-GeV WIMPs 
n  WIMP-nucleus interactions may result in the emission of bremsstrahlung 

photons by a polarised xenon atom. 
n  Detection of these photons – improved sensitivity to low mass WIMPs (down to 

0.3 GeV/c2).  
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Currently preliminary results 
from 2013 data only; analysis of 
2015-2016 data is ongoing. 



Modulation studies 

n  The rate at low energies: ~2 events/ton/day/keV, 10-20 times lower than 
the DAMA modulation amplitude.  

n  No statistically significant annual or diurnal modulation found. 
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‘Signal’: 2-6 keVee 
A ≈ 0.5 cpd/keV/ton 
Φ ≈ 30 days since 1st Jan 

Control: 6-10 keVee 
A ≈ 0.12 cpd/keV/ton 
Φ ≈ 12 days since 1st Jan 

Annual (Preliminary) Diurnal (Preliminary) 
day/night: 2.28 / 2.36 cpd/keV/ton (siderial) 
Asymmetry: -1.7% ± 8.7% (stats only) 



LUX-ZEPLIN (LZ) experiment 
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LZ detector 
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LZ Collaboration, arXiv:1509.02910[physics.ins-det], 1703.09144v1 [physics.ins-det] 

494 TPC-PMTs (253 
top, 241 bottom) + 131 
skin-PMTs 

Neutron 
calibration 
tube 

LZ Collaboration, arXiv:1509.02910[physics.ins-det], 1703.09144v1 [physics.ins-det] 



LZ detector 
n  From D. S. Akerib et al. 

(LZ Collaboration), arXiv:
1802.06039 [astro-ph.IM]. 

n  3’’ PMTs viewing the 
target volume. 

n  5.8 keV nuclear recoil 
energy threshold for 3-fold 
coincidences. 

n  0.31-0.65 kV/cm drift 
field, 99.5% ER/NR 
discrimination. 

n  Max drift time ~0.8 ms 
defines the window for 
recording an event.  

n  5.6 t fiducial volume (to 
remove events from walls 
and wires). 

Vitaly Kudryavtsev 18 ICNFP2018, 6 July 2018 



Expected background 
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From D. S. Akerib et al. 
(LZ Collaboration), 
arXiv:1802.06039. 
Planned live time 1000 
days.  
Complementarity of high-
sensitivity measurements 
of backgrounds (HPGe, 
ICPMS, radon 
measurements and 
control, neutron 
activation analysis) and 
accurate modelling of 
their effects in the 
detector (BACCARAT 
based on GEANT4 + 
NEST + detector 
response). 



Background events 

n  Single scatter nuclear recoil events in the LXe active volume before (left) and 
after (right) rejecting events in coincidence with veto system (LXe skin and 
the Outer Detector (OD).  
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Event spectra: ERs 

n  Energy spectra of electron recoil background from various sources. 
n  222Rn dominates at low energies. 
n  Environmental background and components are not major sources of 

background events. 
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Event spectra: NRs 

n  Single scatter neutron recoil spectra before (left) and after (right) rejecting 
events coincident with veto systems.  

n  The background rate is dominated by 8B solar neutrinos below 4 keV and 
atmospheric neutrinos above 4 keV (after cuts).  

n  Surface contamination (from radon daughters) is another contributor. 
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WIMPs, 8B neutrinos and other backgrounds 

n  8B events will limit 
the sensitivity to 
low mass WIMPs. 
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Sensitivity to WIMPs 

n  Expected limits on spin-independent cross-sections for 1000 days of live 
time (left) and discovery potential (right).  
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Conclusions 

n  The LUX experiment has achieved the world-best sensitivity at the time of 
data releases proving the great potential of the time projection chamber 
technology based on two-phase xenon for searching for a very rare signal 
from dark matter WIMPs. 

n  The LZ experiment is replacing LUX at SURF and will be operational in 
2020 with 7 tonnes of liquid xenon as a target material.  

n  The LZ is expected to reach the sensitivity of 1.6×10-48 cm2 to spin-
independent WIMP-nucleon cross-section and 2.7×10-43 cm2 to spin-
dependent WIMP-neutron cross-section. 

n  Other physics include search for axions and ALPs, extending WIMP search 
to masses below 5 GeV and search for neutrinoless double-beta decay.  
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