

Present status of LUX and LUX-ZEPLIN (LZ) experiments

Isabel Lopes

LIP, Universidade de Coimbra, Portugal

On behalf of LUX and LZ Collaborations

Dark Matter – Cairo, Egypt, 14 -17 December 2015

Outline

1. LUX

- Reminder what is LUX?
- The October 2013 result
- LUX "Run 4" into 2016
- Calibration and re-analysis effort of 2013 "Run 3" data

2. LUX-ZEPLIN (LZ)

The Basics

WHAT IS LUX?

THE LUX COLLABORATION

PI, Professor Bob Jacobsen Murdock Gilchriese Senior Scientist Kevin Lesko Senior Scientist Scientist Peter Sorensen Victor Gehman Scientist Attila Dobi Postdoc Daniel Hogan Graduate Student Mia Ihm Graduate Student Kate Kamdin Graduate Student Kelsey Oliver-Mallory Graduate Student

Lawrence Livermore

Adam Bernstein

Kareem Kazkaz nardo LIP Coimbra

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Francisco Neves Alexander Lindote

		-		
SLAC	Nation	Accel	erator	La

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Kim Palladino	Project Scientist
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Wing To	Research Associate
Rosie Bramante	Graduate Student
Wei Ji	Graduate Student
T.J. Whitis	Graduate Student

SD School of Mines

PI, Professor Graduate Student

Xinhua Bai

Doug Tiedt

David Taylor

Mark Hanhardt

Project Engineer Support Scientist

Ā∭M Texas A&M

PI. Professor James White [†] Robert Webb PI, Professor Rachel Mannino Graduate Student Paul Terman Graduate Student

University at Albany, SUNY

Matthew Szydagis PI. Professor Jeremy Mock Postdoc Graduate Student Steven Young

UC Davis

Dave Herner

Ray Gerhard

Jacob Cutter

Sally Shaw

Mani Tripathi PI, Professor Britt Hollbrook Senior Engineer John Thmpson Development Engineer Senior Machinist Electronics Engineer Aaron Manalaysay Postdoc Scott Stephenson Postdoc Graduate Student James Morad Graduate Student Sergev Uvarov Graduate Student

James Dobson

Maria Francesca Marzioni

University of Maryland

University of Rochester

Tom Davison

Carter Hall

Jon Balajthy

0

Frank Wolfs

Woitek Skutski

Eryk Druszkiewicz

Dev Ashish Khaitan

Mongkol Moongweluwan

Richard Knoche

Postdoc

Graduate Student

Graduate Student

PI, Professor

PI. Professor

Senior Scientist

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Susanne Kyre	Engineer
Dean White	Engineer
Carmen Carmona	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Melih Solmaz	Graduate Student
	Liniversity College London

University College London Chamkaur Ghag PI, Lecturer

Graduate Student

ongming Mei	PI, Professor	
hao Zhang	Postdoc	
ngela Chiller	Graduate Student	
hris Chiller	Graduate Student	

-	
Daniel McKinsey	PI, Professor
Ethan Bernard	Research Scientist
Markus Horn	Research Scientist
Blair Edwards	Postdoc
Scott Hertel	Postdoc
Kevin O'Sullivan	Postdoc
Elizabeth Boulton	Graduate Student
Nicole Larsen	Graduate Student
Evan Pease	Graduate Student
Brian Tennyson	Graduate Student
Lucie Tvrznikova	Graduate Student

Senior Researcher Auxiliary Researcher Postdoc Postdoc

Grp.

Staff Physicist

PI. Professor

Graduate Student

Assistant Professor

PI, Leader of Adv. Detectors

aboratory

LUX Principle: Two-Phase Xenon TPC

• S1: LXe is an excellent scintillator

- Density: 3 g/cm³
- Light yield: >60 ph/keV (0 field)
- Scintillation light: 178 nm (VUV)
- Nuclear recoil threshold ~2 keV

S2: Even better ionisation detector

- S1+S2 allows mm vertex reconstruction
- Sensitive to single ionisation electrons
- Nuclear recoil threshold <1 keV
- And a great WIMP target too
 - Scalar WIMP-nucleon scattering rate dR/dE~A²
 - Odd-neutron isotopes (129Xe, 131Xe) enable spin-dependent sensitivity
 - Excellent ionisation threshold: 'light WIMP' searches using S2 only
 - No damaging intrinsic backgrounds (¹²⁷Xe, ^{129m/131m}Xe, ⁸⁵Kr, ¹³⁶Xe)

1.5 keV electron recoil event

LUX Technology

Two-phase xenon detector

- 250 kg (active) mass of ultrapure liquid xenon (370 kg total)
- S1 and S2 light read out by two arrays of 61 ULB photomultiplier tubes
- Shielded from external radioactivity by ultrapure water (Cerenkov μ detector)

111-126 (2013) arXiv:1211.3788

NIM. A 704,

Not actually used for Run 3 '

Sanford Lab – Davis Laboratory

April – August Data

THE LUX 2013 RESULT

LUX WIMP Search, 85.3 live-days, 118 kg

ER and NR Calibration Data

Gray contours indicate constant energies using a S1-S2 combined energy scale

Limit on SI WIMP-nucleon cross-sections

Limit on SI WIMP-nucleon cross-sections - low mass WIMPs

- Low-mass regime: several "hints" of WIMP signal strongly disfavored
- Dramatic relative improvement in sensitivity due to excellent light collection

It's happening

LUX RUN 4 AND ONGOING OPERATIONS

LUX Run 4

- Before Run 4
 - End of 2013: high-stats calibration data with CH₃T and DD neutron sources, for Run 3
 - First half of 2014: optimizing grids HV, "conditioning".
 Increased extraction field by 17%
- Run 4 started in Sep 2014 after finalizing new stable run parameters (mainly HV)
 - First: 4 weeks of DD neutron data + 5 days of CH_3T data
 - Accumulated ~250 live-days of WIMP search data so far
 - Second set of DD + CH_3T calibrations in March-April.
 - Aiming for 300 live-days WS + necessary calibrations before June 2016

LUX Run4- Prospects

Expected improvement over 2013 sensitivity: x2 – x4

- One important low-E intrinsic background has disappeared (¹²⁷Xe)
- Benefit from better background modeling for Profile Likelihood analysis
 - Benefit from improved detector response calibration at very low energy

C.

These can also be applied to Run 3 data, now that we

have the end-2013 calibration data, have had a year to look at it, and to refine the background model!

More of a good thing

RE-ANALYSIS OF 2013 RUN 3 DATA

Measuring light

Better estimators for detected photons:

- · Removed a bias in baselines
- Photon response calibrated
 in the VUV (2 phe from 1
 photon)
- Digital counting of photons in PMT waveforms (for S1<20 keV)

Event Energy reconstruction

$$E = \frac{1}{L} \left(n_{ph} + n_e \right) W$$

 n_{ph} , $n_{e:}$ photons and electrons leaving the interaction site L: mean fraction of recoil energy lost to electrons L=1 for electron recoils; L<1 for nuclear recoils W=13.7 eV T. Shutt et al., Nucl. Phys. Proc. Suppl. 173, 160 (2007).

$$\langle S_{1c} \rangle = g_1 n_{ph} \qquad \langle S_{2c} \rangle = g_2 n_e$$

g₁ accounts for light collection efficiency g₂= electroluminescence per single electron x electron extraction efficiency

g-Factors Determination

- 12% efficiency for the detection of a primary scintillation photon
 - previously 14% quoted
- 49% electron extraction (from 24.66 detected photons/e and g₂=12)
 previously 65% but g₂=16.0 is what matters

ER Calibration with tritium (0 -18 keV)

- Injection of CH₃T
- Homogeneous β source, Q = 18 keV
- Demonstrated removal with τ < 12h
- Can take WS data again safely 5 days after 3 Bq injection
- Extract Q_{γ} and L_{γ} for electron recoils

2nd campaign of CH₃T in Dec 2013

180 000 events accumulated

Out of the tritium data

- Powerful support for the combined energy model
- L_v and Q_v for ER measured down to 1.1 keV
- Precise determination of the probability for an ER event to "leak" down into NR S2/S1 region, as a function of S1

In situ NR Calibration

- D-D neutron generator
- Neutron generator/beam pipe assembly aligned 16 cm below liquid level in LUX active region to maximize usable single / double scatters
- 105 live hours of beam time in Aug 2013

In situ NR Calibration with kinematically - constrained neutron scatters

- Identify double scatters along beam line inside LUX. Angle θ gives deposited energy.
 - \rightarrow Absolute calibration of ionization response Q_Y
- Apply ionization scale found above to single scatters
- \rightarrow Absolute calibration of scintillation response L_v

Nuclear Recoil Response

- Data first shown in Feb 2014 with very preliminary analysis.
- Significant effort to refine analysis since then
 - Study of all systematics
 - Optimization of events selection
 - Improved models of ionization and scintillation and scintillation
- Great progress:
 - $-Q_v$ measured down to 0.7 **keVr**
 - $-L_v$ measured down to 1.1 **k**eVr

Kinematic reach now 3.3 GeV/c² WIMP mass

What else was Improved?

- Update to Background Model
 - Addition of "Wall Events"
 - ²⁰⁶Pb nuclear recoils
 - ³⁷Ar
 - ¹²⁷Xe naked X-rays included
- Increase of the exposure
 - Increase of fiducial volume (118 kg \rightarrow 145kg)
 - + 10 days of data
- Updates to position reconstruction algorithm
 - Use of photon counting at very low energy
 - Improvement of LRFs
- Taking into account non-uniformity of electric field
- Use of both top and bottom PMT array to determine S2

Distribution of Backgrounds

- Measured 3.5 ppt Kr with RGA.
- PMT gamma-rays = biggest background
- 591 surviving events in the fiducial volume No ER v. NR discrimination here: PLR deals with whole distribution.

WIMP-Search Data

Spin-Independent elastic WIMPnucleon cross section

LUX-ZEPLIN (LZ)

LZ = LUX + ZEPLIN

32 institutions currently

=US (23) + UK(8)+PT(1)+RU(1)

About 190 people

LIP Coimbra (Portugal) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) Shanghai Jiao Tong University (China) University of Sheffield (UK)

University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley **Brookhaven National Laboratory Brown University** University of California, Davis Fermi National Accelerator Laboratory Kavli Institute for Particle Astrophysics & Cosmology Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority **SLAC National Accelerator Laboratory** Texas A&M Washington University University of Wisconsin Yale University

LZ Timeline

Year	Month	Activity
2012	March	LZ (LUX-ZEPLIN) collaboration formed
	May	First Collaboration Meeting
	September	DOE CD-0 for G2 dark matter experiments
2013	November	LZ R&D report submitted
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK Begin long-lead procurements(Xe, PMT, cryostat)
2016	April	DOE CD-2/3b approval, baseline, all fab starts
2017	June	Begin preparations for surface assembly @ SURF
2018	July	Begin underground installation
2019	Feb	Begin commissioning

$\mathsf{ZEPLIN} \to \mathsf{LUX} \to \mathsf{LZ}$

Next-generation LXe experiment building on LUX & ZEPLIN programmes

- Route to detection & study: a progressive programme
 - ZEPLIN pioneered two-phase Xe for WIMP searches (3.9x10⁻⁸ pb/n)
 - LUX is present world leader in sensitivity (7.6x10⁻¹⁰ pb/n, and ongoing)
 - **LZ** expected sensitivity: $\sim 2x10^{-12}$ pb/n with 3-year run
- Experimental approach: a low risk but aggressive programme
 - Internal bk-free strategy (self-shielding, modest discrimination assumed)
 - Two-phase Xe technology: high readiness level
 - Some infrastructure inherited from LUX
- LZ will provide exciting physics opportunities for light & heavy WIMPs (GeV-TeV): since we do not know what BSM physics looks like!

Scale up ≈ 50 in fiducial mass

LZ Total mass – 10 T WIMP Active Mass – 7 T WIMP Fiducial Mass – 5.6 T

- LUX water shield and an added liquid scintillator active veto.
- Instrumented "skin" region of peripheral xenon as another veto system.
- Unprecedented levels of Kr removal from Xe.
- Radon suppression during construction, assembly and operations.
- Photomultipliers with ultra-low natural radioactivity.

LZ Underground at SURF

Design Status Summary

- Conceptual, and in some cases more advanced design, completed for all aspects of detector
- Conceptual Design Report available as arXiv:1509.02910
- Acquisition of Xenon started
- Procurement of PMTs and cryostat started
- Collaboration wide prototype program underway to guide and validate design
- Backgrounds modeling and validation well underway

TPC PARAMETERS

- 1.5 m diameter/length (3x LUX)
- 7 tonne active LXe mass (28x LUX)
- 2x 241 3-inch PMTs (4x LUX)
- Highly reflective PTFE field cage
- 100 kV cathode HV (10x LUX)
- Electron lifetime 3 ms (3x LUX)

PHYSICS PARAMETERS

- 5.8 keVr S1 threshold (4.5 keVr LUX)
- 0.7 kV/cm drift field, 99.5% ER/NR disc. (already surpassed in LUX at 0.2 kV/cm)

Xe Detector Prototyping

- Extensive program of prototype development underway
- Three general approaches
 - Testing in liquid argon, primarily of HV elements, at Yale and soon at LBNL
 - Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, Yale-> UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhI
 - System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype testing to begin in few months

LZ Calibrations

- Demonstrated in LUX. Calibrate The Signal and Background Model in situ.
- DD Neutron Generator (Nuclear Recoils)
- Tritiated Methane (Electron Recoils)
- Additional Sources e.g. YBe Source for low energy (Nuclear Recoils)

Extensive Calibration

• LUX has led the way to detailed calibrations. LZ will build on this and do more.

^{83m} Kr (routine, roughly weekly)	Activated Xe (^{129m} Xe and ^{131m} Xe)
Tritiated methane (every few months)	²²⁰ Rn
External radioisotope neutron sources	AmLi
External radioisotope gamma sources	YBe
DD neutron generator(upgraded early next year to shorten pulse)	

Cryostat Vessels

- UK responsibility
- Low background titanium chosen direction
 SS alternative advanced as backup
- Ti slab for all vessels(and other parts) received and assayed
- Contributes < 0.05 NR+ER counts in fiducial volume in 1,000 days after cuts

Background Modeled

Projected Sensitivity – Spin Independent

(LZ 5.6 Tonnes, 1000 live days)

Conclusions

- LZ Project well underway, with procurement of Xe, PMTs and cryostat vessels started
- Extensive prototype program underway
- LZ benefits from the excellent LUX calibration techniques and understanding of background
- LZ sensitivity expected to be finally limited by neutrino-induced `background'

Extra Slides

The model

⁸⁵Kr Removal and Screening

- Remove Kr to <15 ppq (10^{-15} g/g) using gas chromatography.
- Best LUX batch 200 ppq
- Setting up to process 200 kg/day at SLAC
- Have a sampling program to instantly assay the removal at SLAC and continuously assay in situ

Outer Detector

- Essential to utilize most Xe, maximize fiducial volume
- Segmented tanks installation constraints (shaft, water tank)
- Gadolinium loaded scintillator, LAB, OK underground
- Daya Bay legacy, scintillator & tanks (and people)
- Advanced conceptual design

Layout of the LZ outer detector system, which consists of nine acrylic tanks. The largest are the four quarter-tanks on the sides. Two tanks cover the top, and three the bottom. The exploded view on the right shows the displacer cylinders placed between the acrylic vessels and the cryostat.

Electronics/DAQ

- LUX legacy, augmented by experienced new groups (primarily DAQ, controls)
- Prototyping underway, will lead to full – chain test of key elements by end of year

Integration/Installation

- Surface assembly of TPC into inner cryostat
- LUX experience at SURF
- Dedicated on site infrastructure improvements for LZ. Design started, construction

Sensitivity with SUSY Theories

53

Sensitivity with Competition

54

Response of Xe to Neutrinos arXiv:1307:5458

LZ – At the neutrino `knee' arXiv:1408.3581

Spin Dependent Neutron

Spin Dependent Proton

Time Evolution

Running Time

- Sensitivity vs. running time.
- 1,000 days is the nominal.
- Baseline backgrounds
- Rapid improvement in sensitivity
- Potential to eventually get to ~ 1 x 10⁻⁴⁸ cm²

