

Isabel Lopes (for the LZ Collaboration)

LIP, Department of Physics, University of Coimbra, Portugal

12th PATRAS Workshop on Axions, WIMPs and WISPs,

Jeju Island, Korea, June 21, 2016

LZ = LUX + ZEPLIN

LIP Coimbra (Portugal) Center for Underground Physics (Korea) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) University of Sheffield (UK) University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley Brookhaven National Laboratory **Brown University** University of California, Davis Fermi National Accelerator Laboratory Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority SLAC National Accelerator Laboratory Texas A&M Washington University University of Wisconsin

LZ: a Two-Phase Xenon TPC

- High purity xenon target
- Electron-recoil backgrounds distinguished by ratio charge(S2)/light ratio(S1)
- 3D imaging (essential to reject background): Z position from S1 – S2 timing; X-Y positions from light pattern

$\mathsf{ZEPLIN} \to \mathsf{LUX} \to \mathsf{LZ}$

LZ built on LUX & ZEPLIN programmes

- Route to detection & study: a progressive programme
 - ZEPLIN pioneered two-phase Xe for WIMP searches (3.9x10⁻⁸ pb/n)
 - LUX is present world leader in sensitivity (6x10⁻¹⁰ pb/n (0.6 zb) at 33 GeV/c² and ongoing)
 - LZ expected sensitivity: <3x10⁻¹² pb/n @ 40 GeV/c² with 3-year run
- Experimental approach: a low risk but aggressive programme
 - Internal background-free strategy
 - Two-phase Xe technology: high readiness level
 - Some infrastructure inherited from LUX

LZ Total mass – 10 T WIMP Active Mass – 7 T WIMP Fiducial Mass – 5.6 T

- •7 tonne active LXe mass; 1.5 m diameter/length
- •247 (top) and 241 (bottom) 3" ϕ PMTs (radioactivity ~mBq; high QE)
- Highly reflective PTFE field cage ($R_{PTFE} \ge 95\%$)

Performance drivers

	Requirement / Baseline	Goal
Cathode HV	50 kV	100 kV
Light collection	7.5%	12%
e ⁻ lifetime (µs)	850	2800
N-fold trigger coincidence	3	2
²²² Rn	20 mBq	1 mBq

- 5.8 keVr S1 threshold (4.5 keVr LUX)
- 0.7 kV/cm drift field, 99.5% ER/NR disc. (already surpassed in LUX at 0.2 kV/cm)

Outer Detector

- Essential to utilize most Xe, maximize fiducial volume
- Segmented tanks (installation constraints)
- Gd-loaded liquid scintillator, LAB; 60 cm; 21.5 tons
- 97% efficiency for neutrons

Detector Prototyping

- Extensive program of prototype development underway
- ✦Approach:
 - □ Testing in liquid argon, primarily of HV elements at LBNL
 - Design choice and validation in small (few kg) LXe test chambers in many locations: LLNL, UC Berkeley, LBNL, U Michigan, UC Davis, Imperial College, MEPhI, LIP
 - □ System test platform at SLAC, Phase I about 100 kg of LXe, TPC prototype testing ongoing

Calibrations

- Expand upon successful LUX program
- Spatial response, temporal variation
 - -^{83m}Kr, ^{131m}Xe
- Outer LXe and Gd-scintillator
 - -220Rn, movable gamma ray sources
- Electron and
 - Nuclear recoils
 - -Tritium
 - Variety of high and low energy neutron sources

Background Reduction: key design points

- Photomultipliers of ultra-low natural radioactivity
- Low background titanium cryostact
- Instrumented "skin" region of peripheral xenon as another veto system
- LUX water shield and an added liquid scintillator active veto
- Radon suppression during construction, assembly and operations
- Umprecedented levels of Kr removal from Xe Isabel Lopes - June 21, 2016

Background

Single NR scatter in TPC

Vetoed by Gd-LS and Skin

NR background plus ER leakage from sources external to the LXe (6 - 30 keVnr acceptance; 50% NR acceptance and 99.5% ER discrimination);

Expected backgrounds for 5.6 T fiducial - 1,000 days

ltem	Mass (kg)	U (mBq/ kg)	Th (mBq/ kg)	Co-60 (mBq/kg)	K-40 (mBq/kg)	n/yr	ER (cts)	NR (cts)
R11410 PMTs	90.8	71.6	3.2	2.8	15.4	80.8	1.84	0.012
R11410 bases	2.6	546	31.7	2.3	82.6	44.3	0.37	0.004
Cryostat								
Vessels	2406	1.6	0.3	0.1	0.6	123.7	0.55	0.011
Other components						7.16	0.045	
Total components						<u>9.92</u>	<u> </u>	
Dispersed radionuclides (Rn, Kr, Ar)						870	1	
Laboratory and cosmogenics						- 33	0.12	
Surface contamination						0.2	0.37	
Xe-136 2vßß					67			
Neutrinos (v-e, v-A)						255	0.72	
Total events						1230	1.28	
WIMP backgr events (99.5% ER discrimination, 50% NR acceptance)						6.17	0.64	
Total ER+NR background events					6.	81		

Rn emanation

- Rn (and Kr) dominante internal radioactive background
- Emanates from most materials
- 20 mBq requirement, 1 mBq goal
- Four separate measurement systems, ~0.1 mBq sensitivity
- Main assembly laboratory at SURF will have reduced radon air system

⁸⁵Kr removal

- Remove Kr to <15 ppq (10⁻¹⁵ g/g) using gas chromatography (best LUX batch 200 ppq)
- Setting up to process 200 kg/day at SLAC
- Have a sampling program to instantly assay the removal at SLAC and continuously assay in situ

LZ Underground at SURF

- Years of experience at SURF from LUX
- Dedicated onsite infrastructure improvements for LZ. Design started, construction planned.

LZ Timeline

Year	Month/Q	Activity
2012	March	LZ (LUX-ZEPLIN) collaboration formed
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK Conceptual Design Report arXiv:1509.02910
2016	April	DOE CD-2/3b review passed
2017	Q2	Begin preparations for surface assembly @ SURF
2019	Q1	Begin underground installation
2020	Q4	Commissioning start

Projected Sensitivity – Spin Independent

(LZ 5.6 Tonnes, 1000 live days)

Time Evolution

Summary

- LXe is a pre-eminent target for high mass WIMP search
- Two-phase Xe detector technology is very mature and reliable
- LZ leverages LUX innovations in calibrations, cryogenics and ⁸⁵Kr removal
- High fiducial volume fraction (~80%) due to outer detector and low background from internal materials
- Robust prototyping and test program to optimize detector performance
- Material screening programme well underway
- Limit < 3x10⁻⁴⁸ cm² @ 40 GeV/c² in 1000 live-days

Extra Slides

Xe purification and cryogenics

- Gas phase purification through getter- 10 tons/2.5 days
- Trap-enhanced mass spec; sensitivity ~ppt
- High efficiency two-phase heat exchange
- LN thermosyphon-based cryogenics – multiple cooling locations.

Signal and background

Advanced analysis procedure PDFs for PLR

Isabel Lopes - June 21, 2016

Backgrounds: neutrino contribution

Spin Dependent Neutron

27

Spin Dependent Proton

