

The LUX-ZEPLIN (LZ) Dark Matter Experiment

Yue Meng

(On behalf of the LZ collaboration)

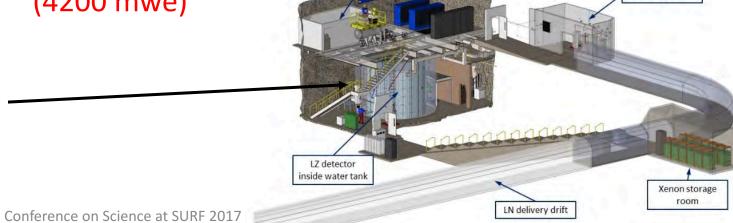
Department of Physics & Astronomy, University of Alabama

LZ collaboration

36 institutions 250 scientists, engineers, and technicians

- 1) Center for Underground Physics (South Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) STFC Rutherford Appleton Lab (UK)
- 6) University College London (UK)
- 7) University of Bristol (UK)
- 8) University of Edinburgh (UK)
- 9) University of Liverpool (UK)
- 10) University of Oxford (UK)
- 11) University of Sheffield (UK)
- 12) Black Hill State University (US)

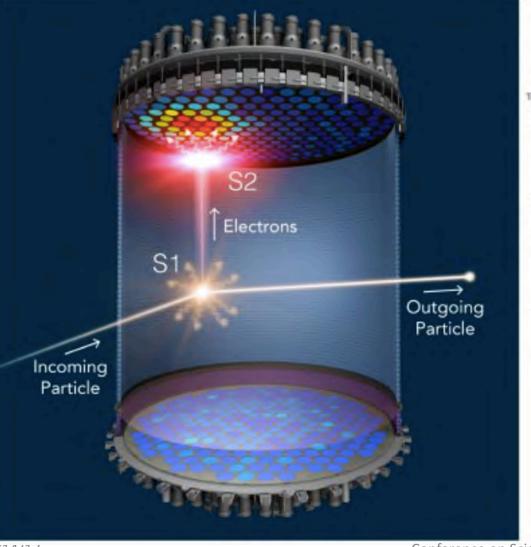
- 13) Brookhaven National Lab (US)
- 14) Brown University (US)
- 15) Fermi National Accelerator Lab (US)
- 16) Lawrence Berkeley National Lab (US)
- 17) Lawrence Livermore National Lab (US)
- 18) Northwestern University (US)
- 19) Pennsylvania State University (US)
- 20) SLAC National Accelerator Lab (US)
- 21) South Dakota School of Mines and Technology (US)
- 22) South Dakota Science and Technology Authority (US)
- 23) Texas A&M University (US)


- 24) University at Albany (US)
- 25) University of Alabama (US)
- 26) University of California, Berkeley (US)
- 27) University of California, Davis (US)
- 28) University of California, Santa Barbara (US)
- 29) University of Maryland (US)
- 30) University of Massachusetts (US)
- 31) University of Michigan (US)
- 32) University of Rochester (US)
- 33) University of South Dakota (US)
- 34) University of Wisconsin Madison (US)
- 35) Washington University in St. Louis (US)
- 36) Yale University (US)

Sanford Underground Research Facility in Lead, SD.

LUX decommissioned in the early 2017

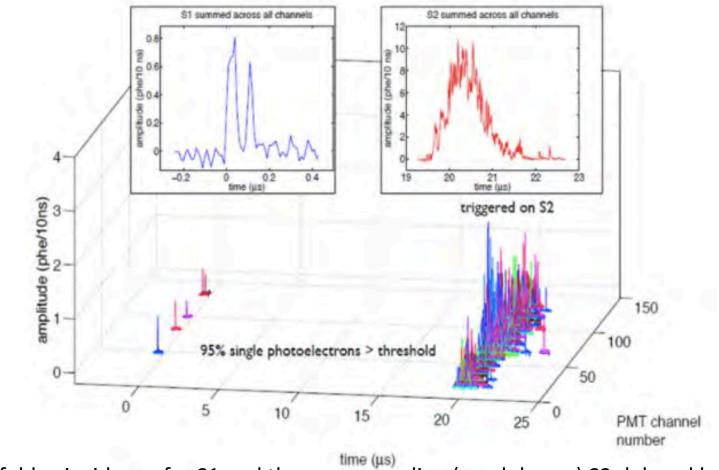
Davis Cavern 1480 m (4200 mwe)


Control room

www.sariterclials.org

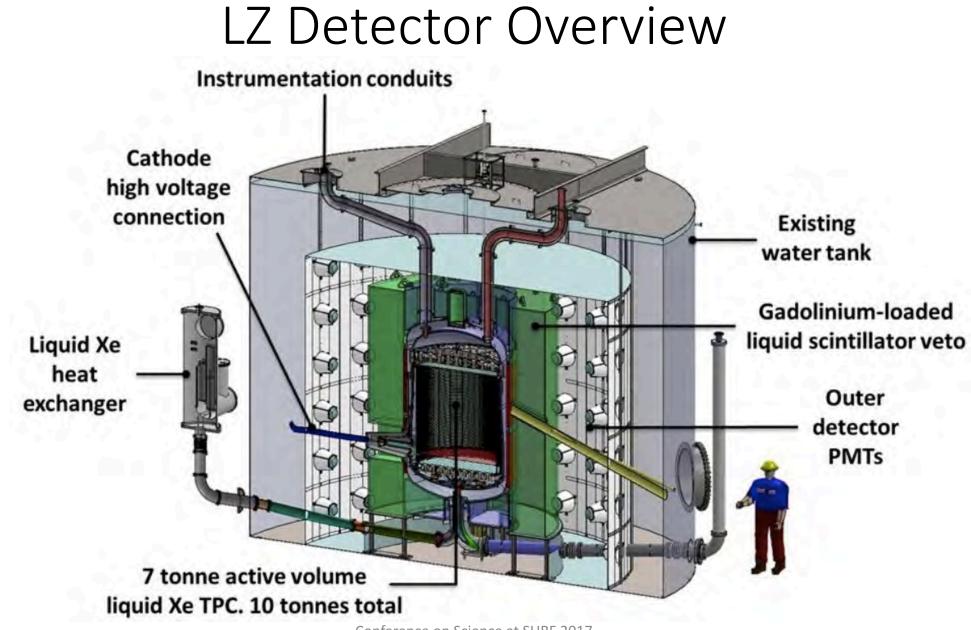
LN storage room

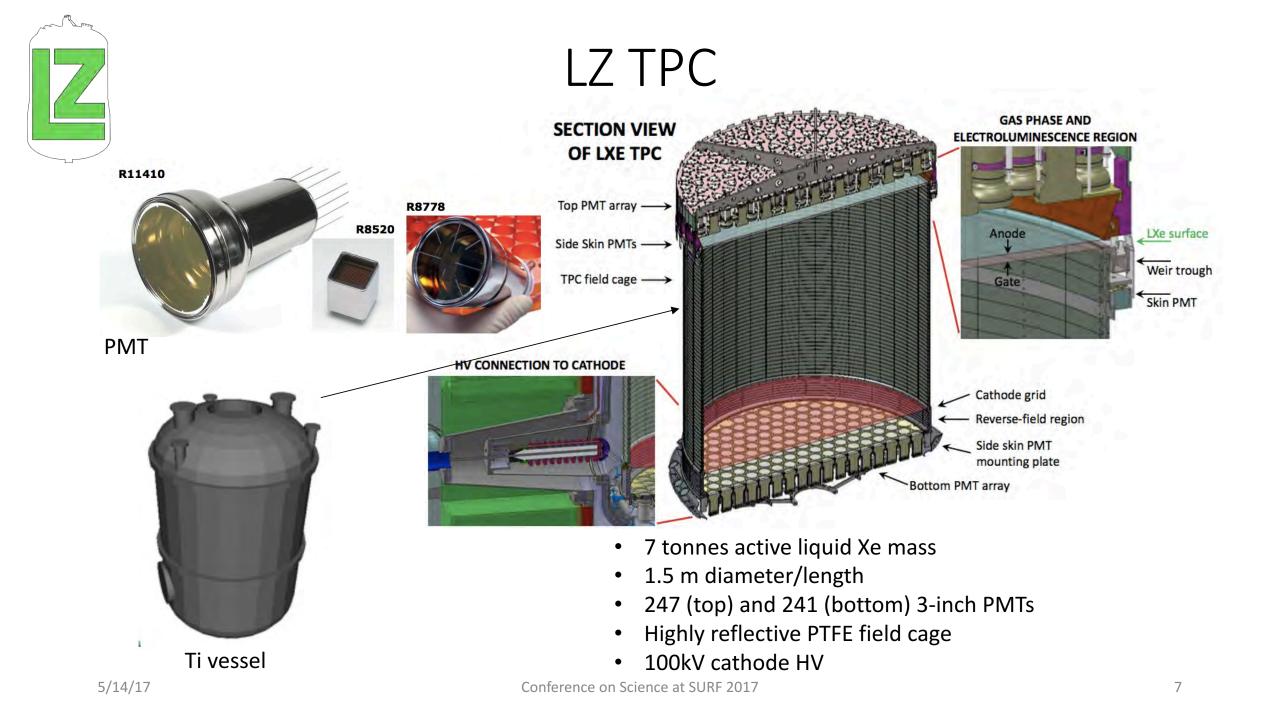
Two-phase liquid/gas Xenon(Xe) TPC



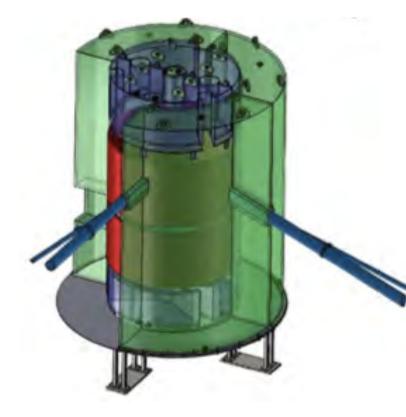
- High purity Xe target
- S1: prompt scintillation signal
 - Light yield: ~60ph/keV(electron recoil(ER))
 - Scintillation light: 178nm(VUV)
 - Nuclear recoil(NR) threshold ~5keV
 - S2: delayed ionization signal
 - Electroluminescence in vapor phase
 - Sensitive to single ionization electrons
 - NR threshold~1keV
- S1 + S2 event by event
 - ER background rejection by ratio of charge(S2)/light(S1) (>99.5% rejection)
- 3D event reconstructions
 - Z position from S1-S2 drift time
 - X-Y positions from S2 light pattern
 - reject external background

S1




Two-phase Xe TPC Performance 1.5 keV Electron in LUX

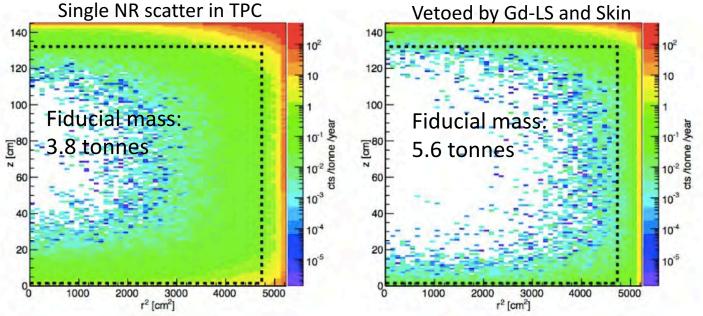
A 5-fold coincidence for S1 and the corresponding (much larger) S2 delayed by 20 μs



Performance Drivers

Detector Parameter	Reduced	Baseline	Goal
Light collection (PDE)	0.05	0.075	0.12
Drift field (V/cm)	160	310	650
Electron lifetime (µs)	850	850	2800
PMT phe detection	0.8	0.9	1.0
N-fold trigger coincidence	4	3	2
²²² Rn (mBq in active region)	13.4	13.4	0.67
Live days	1000	1000	1000

- 5.8 keVnr S1 threshold
- 0.31 kV/cm drift field, 99.5% ER/NR discrimination efficiency



Outer detector

Outer Detector (OD)

- High veto efficiency for neutron and gamma backgrounds
- Hermetic measurement of penetrating backgrounds
- Liquid Xe skin scintillation: 4-8 cm (walls), ~20 cm (dome)
- Gd-loaded liquid scintillator (linear alkylbenzene(LAB)): 60 cm, 21.5 tonnes

- Increases effective fiducial mass from 3.8 to 5.6 tonnes
- Internal backgrounds(Kr, Rn and neutrino-induced) now dominate Conference on Science at SURF 2017 9

Backgrounds Control

Intrinsic Contamination Backgrounds Mass (kg)

Background table

Th late

mBq/kg

Co60

mBq/kg

K40

nBq/kg

ER (cts)

0.14

0.08

1.46

0.36

0.13

0.02

0.00

1.45

0.06

0.00

0.97

0.27

0.01

0.06

0.00

0.04

0.05

0.72

0.45

0.43

0.00

0.45

0.03

0.01

0.00

7.18

597

101

24.5

2.47

40.0

4.3

0.19

776

67

255

0

0

0

1,100

IR (cts) (w

SF rei.)

0.001

0.001

0.013

0.004

0.008

0.001

0.000

0.001

0.008

0.000

0.008

0.004

0.002

0.000

0.000

0.001

0.001

0.014

0.002

0.007

0.000

0.001

0.000

0.000

0,000

0.077

-

1

.

0.06

0.37

0.50

0

0

0

0.21

0.05

0.72

0.6

Th early

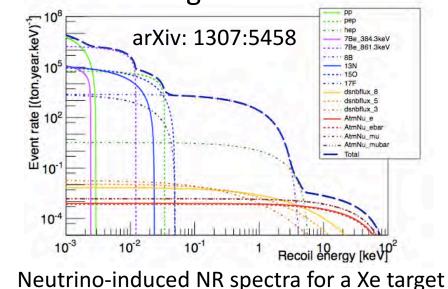
nBq/kg)

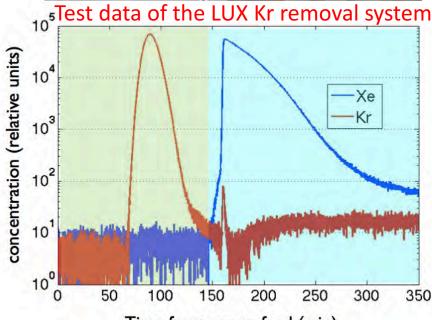
U early

mBq/kg

U late

nBq/kg


46.7 5.25 0.80 1.07 0.72 0.03 3.77 71.7 2.69 0.24 0.42 0.30 0.00 1.36 Lower PMT Structure 91.9 71.63 3.12 2.99 2.82 15.41 R11410.3" PMTs 3.20 R11410 PMT Bases 2.8 287.74 75.80 28.36 27.93 1,43 69.39 Assay and assess all candidate 16.25 8778 2" PMTs 6.1 137.50 59.38 16.88 16.88 412.50 2.2 60.50 4.75 4.75 24.20 332.76 Skin 1" PMTs 5.19 108.46 37.62 O Skin PMT Bases 0.2 212.95 42.19 2.23 123.61 detector materials and 104.2 30.13 1.55 3.32 3.15 0.65 33.12 TPC PTFE 184.0 0.02 0.02 0.03 0.03 0.00 0.12 0.49 Grid Wires 0.18 1.20 0.27 0.33 1,60 0.40 components with many Grid Holders 92.3 2.86 0.83 0.94 0.82 1.42 2.82 92.5 5.49 0.13 0.32 0.26 0.00 0.71 Field Shaping Rings Detector dedicated screening facilities 1.32 22.40 8.94 11.38 9.57 0.35 19.44 **TPC Sensors** components 0.08 335.50 90.46 38.48 25.02 7.26 3,359 **TPC** Thermometers 15.1 0.79 0.18 0.23 0.33 1,05 0.30 Xe Recirculation Tubing prior to adoption HV Conduits and Cables 137.7 2.0 2.0 0.4 0.6 1.4 1.2 199.6 3.36 D.48 0.48 0.58 1.24 1.47 HX and PMT Conduits 2409.6 1.70 0.14 0.30 0.25 0.64 0.10 33.7 73.91 26.22 3.22 4.24 10.03 69.12 Assay techniques: 23.8 18.91 18.91 3.45 3.45 1.97 51.65 26.0 0.02 0.02 0.03 0.03 0.00 0.12 3199.3 0.16 0.39 0.02 0.06 0.04 5.36 0.01 0.01 0.00 gamma spectroscopy 17640.3 0.01 0.01 0.00 570 388 Outer Detector PMT 204.7 470 395 0.00 534 12.35 12.35 4.07 4.07 9.62 9.29 770.0 mass spectroscopy Subtotal (Detector Components) Xenon 222Rn (1.65 "Bg/kg) 220Rn (0.08 µBg/kg) contaminants neutron activation natKr (0.015 ppt g/g) natAr (0.45 ppb g/g) analysis(NAA) 210Bi (0.1 µBg/kg) Environment, cosmogenic, Laboratory and Cosmogenics Fixed Surface Contamination surface contamination radon emanation Subtotal (Non-v counts) Physics Backgrounds counting 36Xe 2v80 strophysical v counts (pp+7Be+13N) Physics Astrophysical v counts (8B) alpha spectroscopy strophysical y counts (Hep) backgrounds Astrophysical y counts (diffuse supernova) strophysical v counts (atmospheric Juplotal (Physics backgrounds Total 5/14/17 Total (with 99.5% ER discrimination, 50% NR efficiency)


Internal Backgrounds

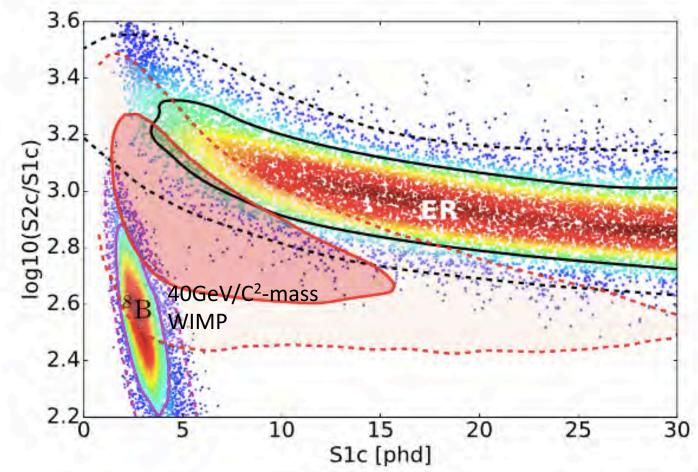
Rn, Kr and neutrinos induced backgrounds dominate after applying vetoes

- Rn:
 - Measure Rn emanation rate for most materials/parts
 - 4 emanation systems with ~0.1 mBq sensitivity
 - Main assembly laboratory at SURF will have reduced radon air system
- Kr: Remove Kr to <15 ppq using gas chromatography
- Neutrino-induced backgrounds

Time from xenon feed (min)

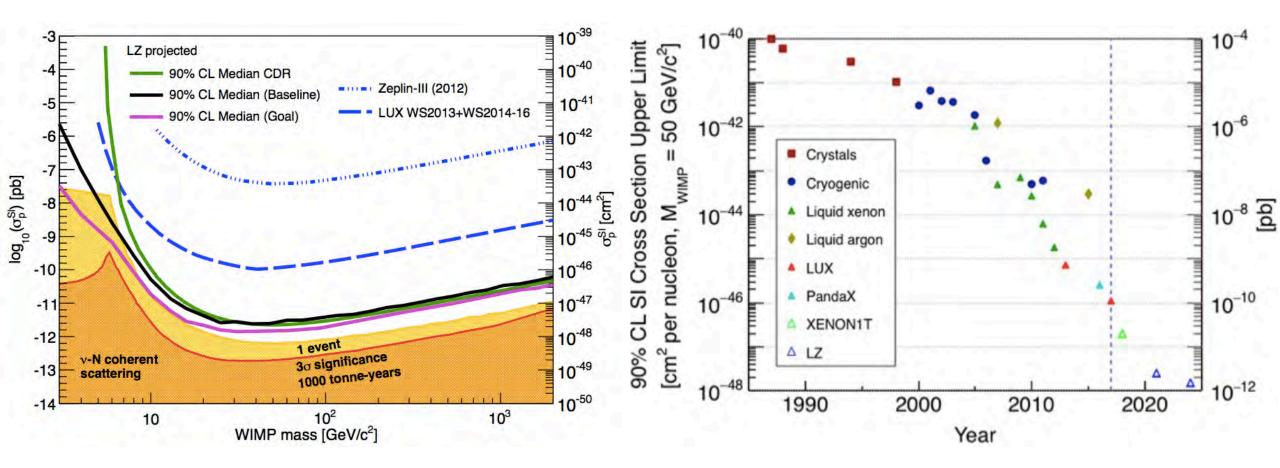
Calibration for LZ

Isotope What		Purpose	Deployment	
Tritium	n beta, Q = 18.6 keV ER band		Internal	
^{83m} Kr	beta/gamma, 32.1 keV and 9.4 keV	TPC (<i>x</i> , <i>y</i> , <i>z</i>)	Internal	
^{131m} Xe	164 keV γ	TPC (x, y, z) , Xe skin	Internal	
²²⁰ Rn	various α 's	xenon skin	Internal	
AmLi	(α,n)	NR band	CSD*	
²⁵² Cf	spontaneous fission	NR efficiency	CSD	
⁵⁷ Co	122 keV γ Xe skin threshold		CSD	
²²⁸ Th	2.615 MeV γ , various others	OD energy scale	CSD	
²² Na	back-to-back 511 keV γ's TPC and OD sync		CSD	
⁸⁸ Y Be	152 keV neutron low-energy NR response		External	
²⁰⁵ Bi Be	88.5 keV neutron low-energy NR response		External	
²⁰⁶ Bi Be	47 keV neutron	low-energy NR response	External	
DD	2,450 keV neutron	NR light and charge yields	External	
DD	272 keV neutron	NR light and charge yields External		



LZ Detector Key Points

- Two-phase liquid/gas Xe TPC is utilized with good light collection and background rejection with ER discrimination.
- 7 tonnes active of liquid Xe can achieve WIMP-nucleon spin-independent cross section of 2.3×10⁻⁴⁸ cm² for a 40 GeV/c² WIMP mass with 1,000 live days and 5.6 tonnes fiducial mass.
- Veto system (skin PMTs + scintillator + water tank) increases reliability of background measurements and allows maximum fiducial volume.
- Both internal (within LXe) and external backgrounds from the detector components and environment need to be well controlled.
- The LZ calibration strategy is ready to address the widest possible range of predicted dark-matter signatures.


Simulation of NR/ER backgrounds

Simulations of the most prominent ER and NR (from 8B) backgrounds are plotted in the log10(S2c/S1c)-S1c plane. The statistics shown represent 5x the expected ER background and 500x the expected NR background in the nominal LZ exposure. The red tinted area shows the expectation for events from a 40 GeV/c 2 -mass WIMP, falling between the two background populations with the region enclosed by the solid(dashed) line representing the $1 \sigma(2 \sigma)$ band.

Projected Sensitivity and Time Evolution

Timeline

Year	Month	Milestone
2012	March	LUX-ZEPLIN (LZ collaboration formed)
2012	September	DOE CD-0 for G2 dark matter experiments
2013	November	R&D report submitted
2014	July	LZ dark matter experiment selected in US and UK. Begin long-lead procurements (Xe, PMT, cryostat)
2015	April	DOE CD-1/3a approval Conceptual design report: arXiv:1509.02910
2016	April	DOE CD-2/3b approval Technical design report: arXiv: 1703.09144
2017	June	Begin preparations for surface assembly at SURF
2018	July	Begin underground installation
2019		Begin commissioning

Summary

- LZ dark matter experiment proceeds on schedule
- Long lead-time item procurement underway: Xenon, PMTs, Cryostat vessel, etc.
- Materials screening programme well underway
- LZ benefits from LUX calibration techniques and understanding of backgrounds
- WIMP sensitivity 2.3×10⁻⁴⁸ cm² for a 40 GeV/c² WIMP mass with 1,000 live days and 5.6 tonnes fiducial mass