

Radon Reduction System For LZ Dark Matter Experiment Maris Arthurs On behalf of the Michigan LZ group This project was funded by DOE

APS, April 2019 Meeting Denver, Colorado

Z Radon—Where is it from & Why is it bad ?

- ²²²Rn is a product of ²³⁸U decay
 mean life of τ_{Rn} = 5.516 day
- Trace amounts of ²³⁸U in detector components: *radon emanation*
 - ²²²Rn is <u>CONTINUOUSLY</u> resupplied
 - Particularly high from warm parts with large surface area
- It dissolves in liquid xenon
 - Cannot be removed by hot purifying getters
 - β-decay of ²¹⁴Pb mimics WIMP signal
 - Survives the conventional charge/light discrimination cut, if present in high enough level.

Z Rn contribution to LZ background spectra

The background spectra in the 5.6 ton fiducial volume of the LZ TPC for single scatter events ²²²Rn is the dominant ER background in the WIMP dark matter search window (1.5 and 6.5 keV_{ee})

Z In-line radon reduction system for LZ

The LZ goal is to reduce ²²²Rn background of the warm sections (cables and feedthroughs) by at least an order of magnitude.

- Sequestration of atoms in <u>activated</u> <u>carbon trap</u> until most ²²²Rn nuclei decay
 - As in <u>gas chromatography</u>: v(Xe)/ v(Rn) (-85 C) \approx 1000
- In order to obtain removal of 90%, sequestration time must be greater than In(10)· τ_{Rn} = 12.7 days

Radon reduction system R&D at Michigan

Z Different activated charcoals tested

Charcoal	Density (g/cm³)	Surface area (m²/g)	Spec. activity (mBq/kg)	Price (\$/kg)
Shirasagi	0.45	1,240	101 ± 8	27
CarboAct	0.28	1,000	0.23 ± 0.19	15,000
Saratech	0.60	1,340	1.71 ± 0.20	35
Saratach (HNO ₃)	0.60	1,340	0.51 ± 0.09	135

Z Elution curves fc

- ²²²Rn adsorption characteristics on various charcoals were studied in N₂, Ar, and Xe carrier gases.
- By measuring the ²¹⁸Po spectra after ²²²Rn injection, elution curves were obtained.
- Vastly different transition times for various charcoal types.
- Saratech displays superior performance

$\mathbf{z} \mathbf{k}_{a}$ — the dynamic adsorption coefficients

- Expectations:
 - N₂ and Ar carrier gas follow exponential rise with inverse temp (Arrhenius law)
 - Xe carrier gas on Saratech follows Arrhenius law
- Surprises:
 - > Xe carrier gas on CarboAct violates Arrhenius law
 - \circ k_a with Xe carrier gas is about 10x 50x smaller than in N₂, and Ar carrier gas

 τ , the average breakthrough time for radon is related to the absorption coefficient by $\tau = \frac{k_a m}{f}$ obtained from the fits to the elution curves

Z Adsorption of xenon on charcoal

- Xe atoms tend to occupy the charcoal adsorption sites much faster resulting in the short ²²²Rn breakthrough times
- Xe adsorption in charcoal at -85C is large: ~1.6 kg/kg (in Saratech) at atmospheric pressures
- Adsorption of N₂ and Ar gases was below detection limit of the scale, (below 20 g/kg of charcoal)

Xe adsorption on charcoal:

- Increases linear with decreasing Temp.
- Increases only slightly with pressure
- Depends only weakly on charcoal type

Z Designing a radon trap

- Lowest achievable Rn concentration is limited by specific activity (s₀) of charcoal
- ~7 kg of etched Saratech will reduce Rn concentration from warm cables and feedthroughs at the output of the trap below 1 mBq
- Although CarbAct has lowest s₀, not most efficient trap material for small traps

- 222 Rn breakthrough times in Xe carrier gas are much shorter than in N₂ and Ar carrier.
- Among the investigated charcoals, Saratech appears to be the most efficient ²²²Rn reduction material.
 - Chemical etching of Saratech with HNO₃ acid reduced the intrinsic radioactivity (²³⁸U) by about a factor of three.
 - Etching did not affect ²²²Rn adsorption characteristics of Saratech making it a strong candidate for a trap.
- Published in NIM journal: <u>A 903 (2018) 267–276</u>

U-M LZ Deliverable

 Using the findings from our R&D studies we have built an in-line radon reduction system for LZ detector

- It will contain 11kg of etched Saratech charcoal at -85°C
- It is designed for 0.5 SLPM Xe gas flow rate

Thank You!

Any questions ?

Describes temperature dependence of chemical reaction rates.

$$k = Ae^{\frac{-E_a}{k_b T}}$$

- k: rate constant
- E_a: activation energy (J)
- k_b: Boltzmann constant (J/K)
- T: temperature (K)

Z Flow Impedance in Radon Trap

- ΔP decreases by a factor of 2 when going from room temperature to -85C
- ΔP is a factor of 1.3 higher for Ar than for N₂

- ΔP is lower at higher operating pressures
- At LZ operating pressure and temperature, ΔP is only ~0.01 psi!