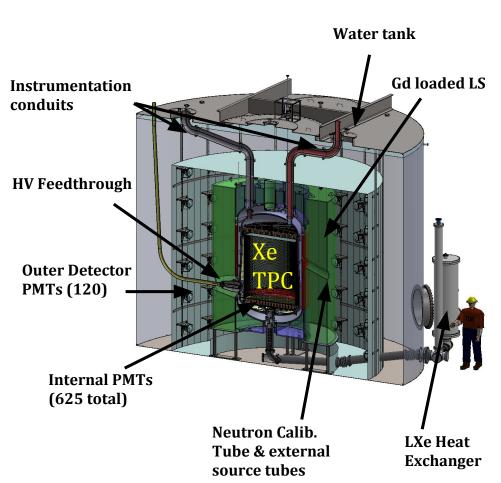
Constraining Radon Backgrounds in LZ

Eric Miller

South Dakota School of Mines & Technology

On Behalf of the LZ Collaboration

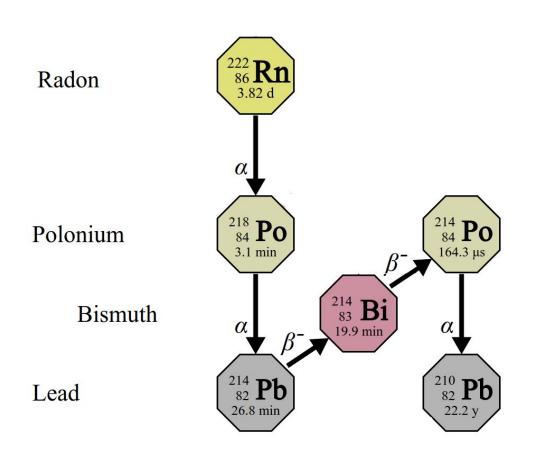
5/25/17 LRT 2017



The LZ Experiment

Successor of LUX and ZEPLIN Dark Matter experiments

Fiducial mass: 5.6 tonne liquid Xe

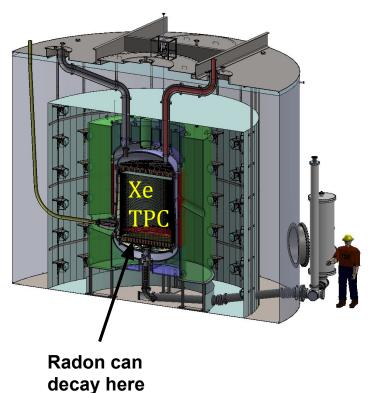

WIMP sensitivity better than 2.3x10⁻⁴⁸ cm² at 40 GeV

Located at the Sanford Underground Research Facility

Backgrounds in LZ

Most Probable (> 99.9%) decays from Radon

Background estimate for 1,000 livetime-days including discrimination and efficiencies:

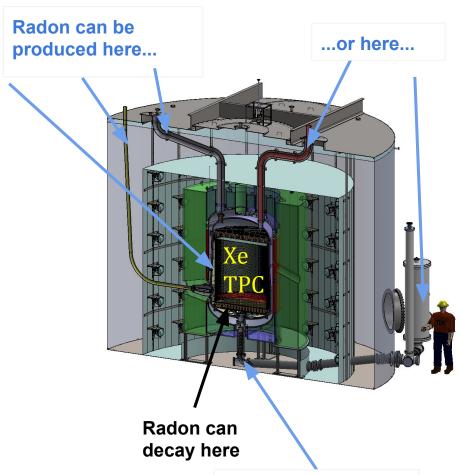

Environmental	0.05
Argon + Krypton	0.13
²¹⁰ Bi Migration	0.20
Material Contamination	0.28
¹³⁶ Xe	0.34
Neutrinos	1.64
Radon & Daughters	3.49
Total	6.12

Radon migrates to fiducial volume; ²¹⁴Pb decays by untagged beta

Backgrounds in LZ

Background estimate for 1,000 livetime-days including discrimination and efficiencies:

Total	6.12
Radon & Daughters	3.49
Neutrinos	1.64
¹³⁶ Xe	0.34
Material Contamination	0.28
²¹⁰ Bi Migration	0.20
Argon + Krypton	0.13
Environmental	0.05

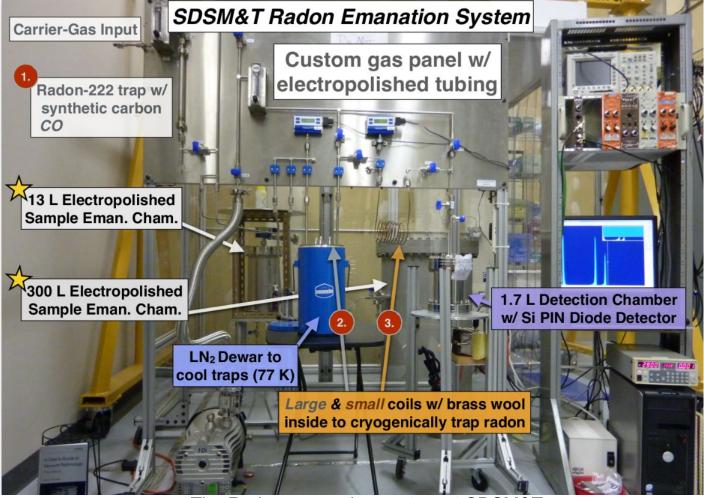

Radon migrates to fiducial volume; ²¹⁴Pb decays by untagged beta

LRT 2017 - Eric Miller

Backgrounds in LZ

Background estimate for 1,000 livetime-days including discrimination and efficiencies:

Total	6.12
Radon & Daughters	3.49
Neutrinos	1.64
¹³⁶ Xe	0.34
Material Contamination	0.28
²¹⁰ Bi Migration	0.20
Argon + Krypton	0.13
Environmental	0.05


Radon migrates to fiducial volume; ²¹⁴Pb decays by untagged beta

...or here...
or anywhere else in
contact with Xe!

Measuring Radon from Materials

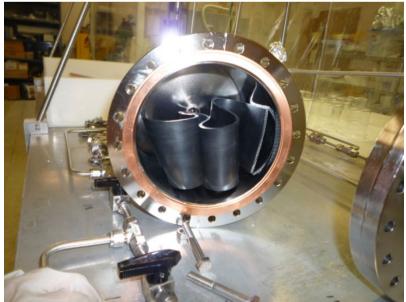
Radon Screening Program for LZ

Planned screening for all materials in contact with Xe

Screening devices at 4 LZ institutions

63 measurements completed so far

System	Technology	Emanation Chamber Volume	Blank Rate	LZ Sample Throughput
UCL	Electrostatic PIN-diode	2.6 liters 2.6 liters	0.2 mBq 0.4 mBq	6 / year
UMD	Electrostatic PIN-diode	4.7 liters	0.2 mBq	12 / year
SDSM&T	Electrostatic PIN-diode	13 liters & 300 liters	<0.3 mBq ~0.3 mBq	18 / year
Alabama	Liquid Scintillator Coincidence	2x 2.6 liters	0.2 mBq	24 / year


LRT 2017 - Eric Miller

Instrument Cross-Calibration

- Each system already calibrated with radon source
- Plans to cross-calibrate all systems with at least two samples (blind)
 - One higher rate to calibrate efficiency w/o interference from backgrounds (rubber)
 - One lower rate to check understanding of backgrounds (thoriated rods)
- EXO Canadian collaborator J. Farine shared a rubber sample with UA to cross-calibrate systems.
- Measurements with 6/7 vessels agree on source strength within uncertainties
- Will begin sending around thoriated rods soon

The rubber sample in a chamber at UA

Preliminary Screening: PMT Cable

LZ to use over 17 km of PMT cabling
Screened 750 m sample of Axon cable
Preliminary measurement Results:

 $1.4 \pm 0.1 \, \text{mBq / km}$

 $1.4 \pm 0.2 \, \text{mBq / km}$

Preliminary Screening: HV Feedthrus

LZ Will have 116 HV feedthroughs, each with 7 pins

Screened 5 samples from manufacturer

Preliminary measurement Results:

 0.1 ± 0.05 mBq / feedthrough

0.08 ± 0.06 mBq / feedthrough

Preliminary Screening: PMT Bases

LZ Will have 625 PMTs in Xe space; therefore 625 PMT bases

Screened 100 bases post-production

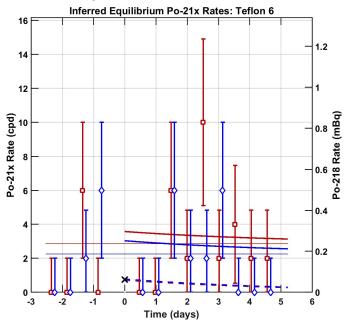
Preliminary measurement Results:

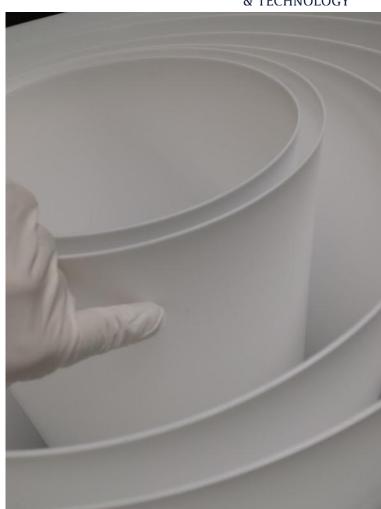
 $0.28 \pm 0.17 \text{ mBq} / 100 \text{ bases}$

Component-wise assay suggests:

0.19 mBq / 100 bases

Preliminary Screening: PTFE




Approx 84 m² of PTFE in LZ

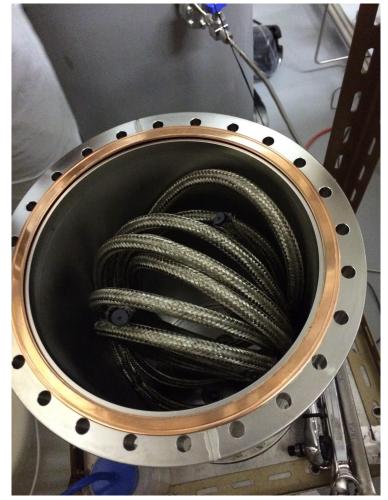
Screened 18 m² sample of skived material

Preliminary measurement Results:

 $< 0.015 \text{ mBq / m}^2$

Preliminary Screening: Cathode HV Cable

LZ will have about 8 m of (very) high-voltage cable to provide power to cathode.


Screened 8 m sample of cable material

Preliminary measurement Results:

 $0.73 \pm 0.33 \, \text{mBq} / \text{m}$

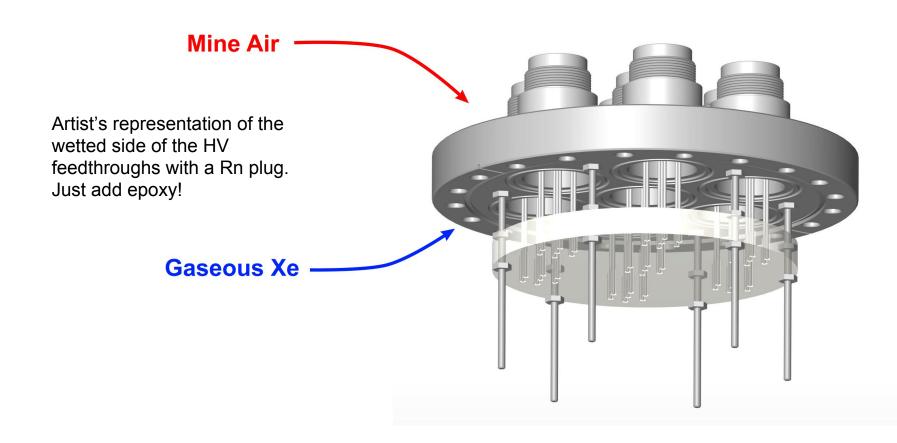
 0.26 ± 0.06 mBq / m (w/o ground braid)

This cable has been rejected, for a variety of reasons.

Significant Preliminary Screening Results

Material	Result	Units	Contribution without mitigation	
PMT Cable - Axon	1.4 ± 0.1 1.4 ± 0.2	mBq / km	24 mBq 24 mBq	
PMT HV Feedthroughs	0.1 ± 0.05 0.08 ± 0.06	mBq / unit	12.2 mBq 9.8 mBq	
PMT Bases	0.28 ± 0.17	mBq / 100	1.8 mBq	
PTFE	< 0.015	mBq / m ²	< 1.29 mBq	
Umbilical Cable (rejected)	0.73 ± 0.33 0.26 ± 0.06	mBq / m	5.6 mBq 2.1 mBq	

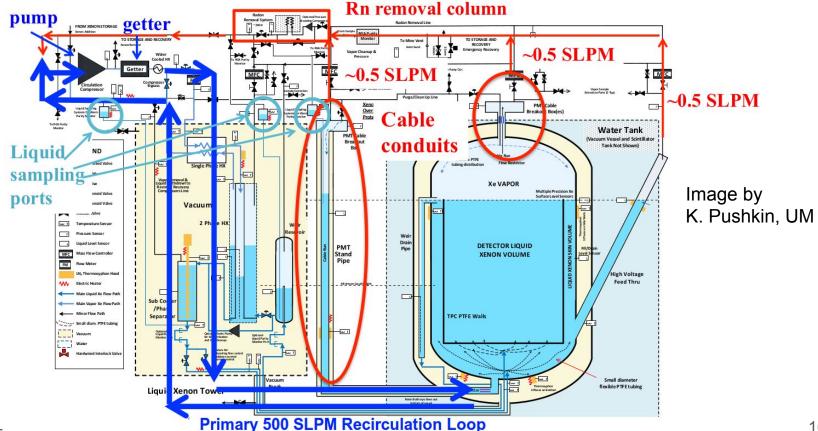
Sum of Rn production from all materials should be less than 10 mBq.


10 mBq expected from dust as well.

Radon Mitigation: Epoxy on Feedthrough

Coat wetted side of ceramic feedthrough with epoxy to prevent migration of radon.

LRT 2017 - Eric Miller

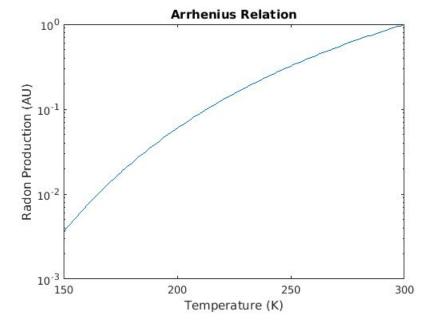


Radon Mitigation: Carbon Trap

Radon can be removed from Xe with cooled carbon trap

Purification of full recirculation impractical, but can clean select regions:

Radon Mitigation: Temperature



Diffusion of radon slows at low temperature, following Arrhenius relation:

$$D = A \exp(-T/T_0)$$

This implies ~100x reduction of radon **diffusing** out of typical materials and into LZ (170K) relative to screenings (300K)

Surface effects, like emanation from recoils or dust, are unaffected by temperature

Preliminary Screening Results After Mitigation

Material	Result	Units	Contribution	After Mitigation
PMT Cable - Axon	1.4 ± 0.1 1.4 ± 0.2	mBq / km	24 mBq	1.2 mBq
PMT HV Feedthroughs	0.05 ± 0.02 0.04 ± 0.03	mBq / unit	6.1 mBq 4.9 mBq	0.6 mBq 0.5 mBq
PMT Bases	0.28 ± 0.17	mBq / 100	1.8 mBq	< 1.8 mBq
PTFE	< 0.015	mBq / m ²	< 1.29 mBq	< 1.29 mBq
Umbilical Cable (rejected)	0.73 ± 0.33 0.26 ± 0.06	mBq / m	5.6 mBq 2.1 mBq	

Sum of Rn production from all materials should be less than 10 mBq.

10 mBq expected from dust as well.

Preliminary Radon Estimate for LZ

Material	Component(s)	Quantity	Unit	Estimate (mBq)
Al ₂ O ₃ resistor	PMT Bases	9790	#	0.58*
BaTiO ₃ capacitor	PMT Bases	3010	#	0.016*
Cirlex	PMT Bases	6000	cm ²	0.37*
Titanium	Cryostat, PMT Mounts, Field Rings, Grid Supports	412,000	cm ²	0.41
PTFE	Reflectors, HV Umbilical	840,000	cm ²	<1.3*
PMT Cabling [†]	PMT Cabling	17,000	m	0.09
PMT Feedthrough [†]	Signal Flange	88	#	< 0.24
Steel Conduit [†]	Cabling Conduit	100,000	cm ²	0.055
R11410 PMT	R11410 PMT	488	#	1.26
R8520 PMT	R8520 PMT	90	#	0.15
R8778 PMT	R8778 PMT	36	#	0.09
Polyethylene	HV Umbilical	4200	cm ²	0.10
Tin-coated copper	HV Umbilical	11,000	cm ²	0.002
Tivar	HV Umbilical	3894	cm ²	0.004*
Acetal	HV Umbilical	195	cm ²	0.0002*
Copper	HV Umbilical	39	cm ²	0.000007
Ероху	HV Umbilical	1000	cm ²	0.0001*
Steel	Cryostat Seals, Xe Recirculation	135,000	cm ²	0.104
Recirculation Pump	Xe Recirculation	1	#	0.1
Purification Getter	Xe Recirculation	2.5	kg	1.34
Transducers & Valves	Xe Recirculation	30	#	0.17
Welds	Recirculation System, Cryostat	32.3	m	0.11
Dust			8	10.0
Total				<16.5

Table slightly updated from LZ TDR

Bo items are measured by collaboration

- * items expected to reduce at low temperature
- t items whose Rn is mitigated by carbon trap:
- > 90% reduction.

LRT 2017 - Eric Miller

Summary

Most significant backgrounds in LZ likely to be from Rn daughters

Radon screening program underway for LZ, employing sensitive screeners at 4 institutions


We have identified some mitigation strategies for problematic materials

Satisfactory expectation of 6.5 mBq from materials, and 16.5 mBq total

Questions?

