

Status of the LUX-ZEPLIN Dark Matter Experiment

Carter Hall, University of Maryland June 30, 2018 NDM 2018, Daejeon, Korea

A WIMP search with 10 tonnes of Liquid Xenon

Search for anomalous low-energy nuclear recoils

Requirements: large target mass + low energy threshold + background control.

LUX-ZEPLIN (LZ) detector

Technical Design Report, arXiv:1703.09144.

Lower PMT cable conduit

Two veto systems: Xe skin PMTs & Outer Detector

LZ Technical Design Report, arXiv:1703.09144

Simulated LZ full exposure with 40 GeV/c² WIMP 1000 days, 5.6 Tons

5

WIMP backgrounds summary

5.6 tonnes x 1000 days; ~1.5 to ~6.5 keV

Background Source	ER (cts)	NR (cts)
Detector Components	9	0.07
Surface Contamination	40	0.39
Laboratory and Cosmogenics	5	0.06
Xenon Contaminants	819	0
222Rn 220Rn natKr (0.015 ppt g/g) natAr (0.45 ppb g/g)	681 111 24 3	0 0 0 0
Physics	322	0.51
136Xe 2vββ Solar neutrinos (pp+7Be+13N) Diffuse supernova neutrinos Atmospheric neutrinos	67 255 0 0	0 0 0.05 0.46
Total	1195	1.03
with 99.5% ER discrim., 50% NR eff.	5.97	0.51

arXiv:1802.06039

WIMP backgrounds summary

5.6 tonnes x 1000 days; ~1.5 to ~6.5 keV

	Background Source		NR	
Radon dominates ER backgrounds			(cts)	
	Detector Components	9	0.07	
	Surface Contamination	40	0.39	
	Laboratory and Cosmogenics	5	0.06	
	Xenon Contaminants	819	819 0	
	222Rn	681	0	
	220Rn	0		
	natKr (0.015 ppt g/g)	24	0	ve scattering of
	natAr (0.45 ppb g/g)	0	<i>pp</i> solar v's;	
	Physics	322	0.51	(atomic electron recoils)
	136Xe 2vββ	67	0	
	Solar neutrinos (pp+7Be+13N)	255	0	
	Diffuse supernova neutrinos	0	0.05	
	Atmospheric neutrinos	0	0.46	
	Total	1195	1.03	
	with 99.5% ER discrim., 50% NR eff.	5.97	0.51	7

arXiv:1802.06039

WIMP backgrounds summary

5.6 tonnes x 1000 days; ~1.5 to ~6.5 keV

Background Source	ER (cts)	NR (cts)	
Detector Components	9	0.07	
Surface Contamination	40	0.39	
Laboratory and Cosmogenics	5	0.06	
Xenon Contaminants	819	0	
222Rn 220Rn natKr (0.015 ppt g/g) natAr (0.45 ppb g/g)	681 111 24 3	0 0 0 0	
Physics	322	0.51	
136Xe 2vββ Solar neutrinos (pp+7Be+13N) Diffuse supernova neutrinos Atmospheric neutrinos	67 255 0 0	0 0 0.05 0.46	
Total	1195	1.03	
with 99.5% ER discrim., 50% NR eff.	5.97	0.51	

Neutrons, mostly from alpha-n on PTFE

> Coherent scattering of atmospheric v's on Xe nuclei

Background control strategy

- Two active veto detectors to suppress and characterize backgrounds
 - Xe skin PMTs (Xe scintillation)
 - Gd-LS Outer Detector
- Rn emanation screening campaign
 - Four Rn screening sites
 - Target Rn activity = $2 \mu Bq/kg$
- Charcoal chromatography to remove ⁸⁵Kr and ³⁹Ar
 - Dedicated facility at SLAC
 - Final ^{nat}Kr/Xe 0.015 ppt (g/g)
- Radio-assay campaign for detector materials
 - \circ γ -screening, ICP-MS, NAA.
- Surface cleanliness to control Rn daughters & dust
 - TPC Assembly in Rn-reduced cleanroom to limit daughter recoils on surfaces
 - \circ Dust < 500 ng/cm² on all LXe wetted surfaces
 - \circ Rn-daughter plate on TPC walls $< 0.5 \text{ mBq/m}^2$

Spin-Independent WIMP Sensitivity arXiv:1802.06039

- Baseline WIMP sensitivity is $1.6 \times 10^{-48} \text{ cm}^2 @ 40 \text{ GeV/c}^2$.
- 1000 days, 5.6 tonne fiducial mass.

WIMP Discovery Potential 3σ and 5σ

LZ has 5σ discovery potential well below the projected 2 tonne-year sensitivity of Xenon1T.₁₁

- Water tank modifications nearly complete.
- Passivation & water leak test scheduled for July.
- LZ Occupancy in August.

Surface Assembly Lab @ SURF TPC assembly & integration site

- Low radon, class 100-1000 cleanroom
- Ateko Radon Reduction System operational & providing low radon air to the SAL.

Titanium Cryostat

- UK deliverable to LZ.
- Intensive R&D program identified low activity titanium material (arXiv:1702.02646)
- Arrived at SURF May 14, 2018.
- LZ acceptance testing in Surface Assembly Lab at SURF.
- Outer vessel testing complete; inner vessel in progress.

Outer cryostat vessel in the SAL at SURF

Liquid Xenon TPC

- 50 kV cathode high voltage
- PMTs
 - 493 3" PMTs in two arrays inside TPC
 - LXe skin 93 1" PMTs, 38 2" PMTs
- TPC structure
 - PTFE segmented walls and Ti field rings
 - Ti/PTFE PMT array plates, top and bottom, holding roughly 250 3" PMTs each
 - Woven wire grids (bottom shield, cathode, gate, anode)
 - LED calibration, fluid flow structures, sensors for temperature, etc
- Logistics: TPC to be fully assembled and integrated into inner cryostat in the Surface Assembly Lab.

PMT Array Assembly at Brown University

- Above: 'PALACE', PMT dark electrical testing and shipping housing for upper and lower LZ PMT arrays (~250 PMTs per array)
- Clamps and seals provide dust and light-tight housing.
- Low airborne Rn, 2-4 Bq/m³
- Dust control with HEPA filtered air.
- Witness plates for dust surveillance; measured dust levels meet the requirement.

TPC grids under production

- Automated loom for weaving SS wire grids.
- 2 Full size (1.5 m diameter) prototype grids complete.
- Production grid rings being fabricated.
- Post-weaving wire treatment to reduce electron emission (arXiv:1801.07231).
- Loom in action: <u>https://www.youtube.com/watch?v=yNycDcMQkss</u>

Loom for weaving grids

TPC field cage components are in hand

- All TPC field cage parts are fabricated and delivered; trial assembly successful.
- Field cage assembly at SURF to begin in September 2018.

Trial assembly of Ti field rings and PTFE field cage elements at LBNL

TPC cathode high voltage

- Tests in liquid argon successfully reach 120 kV(50 kV required).
- Extensive Liquid Xenon prototyping at SLAC.
- High voltage grading structure for cathode assembled at LBL

Model of test structure in liquid argon

Liquid argon cathode high voltage test facility at LBNL

Outer Detector

- Acrylic vessel fabrication underway,
- Gd-LS production equipment being installed at BNL
- PMTs in hand, testing here at IBS is nearly done.

Vacuum distillation of LS at BNL

Veto System Performance

WIMP-like nuclear recoil backgrounds in 6-30 keV region of interest

Fiducial would be reduced from 5.6 to 3.2 tonnes w/o Outer Detector & Xe skin vetoes.

Xe Handling & Purification

- 12 Custom Xe storage packs delivered to PSL for outfitting.
- 4 Xe gas compressors under final fabrication or delivered to PSL.
- 500 SLPM Xe gas circulation rate; 2.3 days to purify 10 tonnes.
- One large getter & efficient two-phase heat exchanger.

Getter at SURF

1 of 4 Xe gas compressors being fabricated

Xe acquisition & Kr removal

- All Xe either in-hand or fixed priced contract.
- Kr removal at SLAC on track to start by July 2019 and finish by end 2019.

- Chromatography to separate Kr (and ⁸⁵Kr) from Xe.
- Demonstration of 0.075 ppt (g/g) in R&D at SLAC.
- Production system designed to remove to 0.015 ppt (g/g) (subdominant by >10x to radon).

Other physics signals?

Coherent scattering of ⁸B solar v's on Xe nuclei 36 NR events in 5.6 tonnes and 1000 days

- 3 PMT S1 coincidence requirement. Detection efficiency is $\sim 3 \times 10^{-3}$.
- Only observe ⁸B events that fluctuate high in S1 light collection.
- Average light collection efficiency of 11.9%. Supported by cold measurements of the PMT QEs and PTFE reflectivity measurements in LXe.
- NR charge and light yields measured by LUX with DD neutron generator.

Preliminary Estimate of 0vββ Decay Backgrounds Q value = 2457 keV, 8.9% ¹³⁶Xe

Item	Counts from ²³⁸ U	Counts from ²³² Th	Other counts	Total Counts	140	LZ Preliminary
TPC PMTs & bases	2.75	0.36	0.0	3.10		
TPC PMT structures & cables	2.70	0.34	0.0	3.03	120	and the second se
Skin PMTs & bases	0.47	0.02	0.0	0.49		
PTFE walls	0.25	0.0	0.0	0.25	100	
TPC sensors & thermometers	1.49	0.0	0.0	1.49		A REAL PROPERTY OF A REA
Field grids & holders	1.14	0.08	0.0	1.23	- 80	
Field-cage resistors	1.47	0.05	0.0	1.51	[cin	and the second
Cryostat	4.27	0.86	0.0	5.14	60	The second s
Outer detector components	1.52	1.12	0.0	2.63		Contraction of the second s
Other components	1.29	0.14	0.0	1.43	40 -	A REAL PROPERTY OF A READ PROPERTY OF A REAL PROPER
Cavern walls	< 0.1*	2*	0.0	2*		
2 uetaeta	-		0.01	0.01	20	
^{8}B solar neutrinos		1.	0.07	0.07		
Neutron-induced ^{137}Xe	1 0 2 0 1	he i Agenti	< 0.01*	< 0.01*	0	25^2 40^2 50^2 60^2 70^2
Total	17.44	4.97	0.09	22.50		r^{2} [cm ²]
*preliminary estimate						(a)

Assumptions:

- 957 kg fiducial volume of ^{nat}Xe (85 kg of ¹³⁶Xe); 1)
- 1000 day observation 2)
- 3) Single site cut in z only (0.3 cm).
- $+/-2\sigma$ ROI around Q value 4)
- 1% (σ) energy resolution; achievable with > 7.5% light collection efficiency (LZ 5) projection is 11.9%).

Preliminary Estimate of 0νββ Decay Sensitivity

- $T_{1/2}$ sensitivity = 0.74 x 10²⁶ years at 90% C.L; better than current KamLAND-Zen sensitivity (0.56 x 10²⁶ years).
- The LZ dataset will allow exploration of the two-phase technique for future double beta decay searches.

LZ timeline

Year	Month	Activity
2008	April	LZ collaboration forms
2012	September	CD-0 for G2 dark matter experiments
2013	November	LZ R&D report submitted to agencies
2014	May	P5 endorses G2 dark matter program
	July	LZ Project selected by US DOE, NSF, & UK STFC
2015	March	CD-1 Review – conceptual design
	September	Conceptual Design Report (arXiv:1509.02910)
2016	April	CD-2 Review – project baseline
2017	January	CD-3 Review – construction start
	March	Technical Design Report (arXiv:1703.09144)
2018	February	WIMP sensitivity paper (arXiv:1802.06039)
	May	Titanium cryostat delivered to SURF
2019	Summer	TPC moves underground
2020	Spring	Ready for operations

LZ collaboration

38 institutions 250 scientists, engineers, and technicians

- 1) IBS-CUP (Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) Royal Holloway University of London (UK)
- 6) STFC Rutherford Appleton Lab (UK)
- 7) University College London (UK)
- 8) University of Bristol (UK)
- 9) University of Edinburgh (UK)
- 10) University of Liverpool (UK)
- 11) University of Oxford (UK)
- 12) University of Sheffield (UK)
- 13) Black Hill State University (US)
- 14) Brandeis University (US)

- 15) Brookhaven National Lab (US)
- 16) Brown University (US)
- 17) Fermi National Accelerator Lab (US)
- 18) Lawrence Berkeley National Lab (US)
- **19)** Lawrence Livermore National Lab (US)
- **20)** Northwestern University (US)
- 21) Pennsylvania State University (US)
- 22) SLAC National Accelerator Lab (US)
- 23) South Dakota School of Mines and Technology (US)
- 24) South Dakota Science and Technology Authority (US)
- 25) Texas A&M University (US)
- 26) University at Albany (US)

- 27) University of Alabama (US)
- 28) University of California, Berkeley (US)
- 29) University of California, Davis (US)
- 30) University of California, Santa Barbara (US)
- 31) University of Maryland (US)
- 32) University of Massachusetts (US)
- 33) University of Michigan (US)
- 34) University of Rochester (US)
- 35) University of South Dakota (US)
- 36) University of Wisconsin Madison (US)
- 37) Washington University in St. Louis (US)
- 38) Yale University (US)

Other physics signals?

Electron recoil background energy (MC)

