A Hunt for Hidden Photons with the LZ Experiment

Athoy Nilima University of Edinburgh

PASCOS 2019 XXV International Symposium (1-5 July 2019, Manchester, UK)

Outline

LUX-Zeplin Experiment

LZ Collaboration

01

02

• Detector Working Principle

Hidden Photons

- Hidden Photon Extension
- Direct Detection
- Connection to ALP Searches

HP search in LZ

- Background Considerations
- Signal Models and Analyses
- Sensitivity Projection: HPs
- Sensitivity Projection: ALPs

03

Results/Discussions

LZ Collaboration

LUX-ZEPLIN

- Dark Matter Direct Detection Experiment
- Detector Located at Sanford Underground Research Facility (SURF), South Dakota, USA
- 37 institutions, 250 scientists, engineers, and technicians

LZ Detector

- liquid xenon Time Projection Chamber (LXe-TPC)
- 7 tonnes of LXe
- Gd loaded outer detector
- 494 PMTs
- (Additional veto) 131 xenon "skin"
 PMTs
- science run to start in 2020
- 1000 live days * 5.6 tonnes planned exposure

Detail overview and status: See Benjamin Krikler 's slides from yesterday!!

Detector Principle

- Signals due to particle interactions:
 - S1 : Primary Scintillation Signal (prompt photons, directly measured by PMTs)
 - S2: Secondary Ionisation Signal (from electroluminescence of electrons extracted in gaseous phase)
- •Energy and Position Reconstruction by S1-S2 Signals

Projected Sensitivity: WIMPs

- Weakly Interacting Massive Particles (WIMPs): An well-motivated Dark Matter candidate
- What LZ mainly Looks For: WIMP- Nuclear Recoils
- for 1000~live days and a 5.6~tonne fiducial mass.
- The best sensitivity of 1.6 x 10⁻⁴⁸ cm² is achieved at a WIMP mass of 40 GeV/c².
- The -2σ expected region is omitted based on the expectation that the limit will be power constrained [8]

Fig.3 . LZ projected sensitivity to SI WIMP-nucleon elastic scattering for 1000~live days and a 5.6~tonne fiducial mass [9]

But....What if Dark Matter is not a WIMP?

Standard Model

Gauge group of Strong interaction: •3 charge types (colour charges) •8 gauge bosons (gluons)

SU(3)

Is this structure that Obvious? *No!* Then....Can there be any **additional gauge forces**?

Hidden Photons

- Dark Matter (DM) is secluded from SM
- extra U'(1) gauge boson as a mediator of SM-DM interactions: Hidden Photons
- Minimal Model: broken U(1) symmetry and a massive hidden photon
- Coupling through the mechanism of kinetic mixing
- Correct DM relic abundance can be obtained automatically (M. Pospelov et al. [6])
- Several Other models incorporating U(1) extensions also exist

Lagrangian

Direct Detection

Hidden Photoelectric Effect

$\frac{\sigma_{abs}v}{\sigma_{pe}(\omega=m_{HP})}$	$\frac{1}{c} = \frac{\alpha'}{\alpha}$	v= velocity of the HP, $\varepsilon = (\alpha'/\alpha)^{1/2} =$ Kinetic mixing
Electromagnetic Fine Structure Constant	$lpha=rac{e^2}{4\pi}$	σ_{abs} = Hidden p.e. cross-section
Hidden Fine Structure Constant	$\alpha' = \frac{g_D^2}{4\pi}$	σ _{pe} = (ordinary) p.e. cross-section

Fig.5. Hidden Photoelectric Effect

- Analogous to the photoelectric effect in SM
- HP completely absorbed
- Line Spectra

Event Rate:(in LXe)

$$R_{HP}[1/\text{kg/day}] = \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \frac{\sigma_{pe}[\text{barn}]}{m_{HP}[\text{keV}]}$$

A = 131.3 is an atomic mass of xenon of natural composition

Connection to Axion Like Particle (ALP) Searches

Hidden Photoelectric Effect for HPs Axio-electric effect for ALPs

$$R_{HP}[1/kg/day] = \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \frac{\sigma_{pe}[\text{barn}]}{m_{HP}[\text{keV}]} \qquad R_{ALP}[1/kg/day] = \frac{1.2 \times 10^{19}}{A} g_{Ae}^2 \sigma_{pe}[\text{barn}] \cdot m_{ALP}[\text{keV}]$$

$$R_{HP}/R_{ALP} = 3.3 \times 10^4 x (\alpha'/\alpha) x (g_{Ae})^{-2} x (1/m_{HP} m_{ALP})$$

Once we have a constraint on (α'/α) for HP we can convert that to a constraint on g_{Ae} for ALPs

Analysis Framework

Background Model

- Vast Majority of of Backgrounds in ER band
- This Analysis: Used the same
 Background Models as in WIMP search
- ER Background Model upto 100 keV

Table 1. ER Background Components			
Backgro und	Components		
	Solar pp+Be7 Neutrinos		
ER	Xe136 2vBB Decay		
	Kr85		
	Rn-222		
	Rn-220		
	Detector ERs		

HP Signal Model

- Investigated Hidden Photon Masses from 2 keV to 85 keV
- Theoretical event rates calculated according to Slide 13
- Signal Models generated using NEST (Nobel Element Simulation Technique) version 2

Energy Reconstruction

 $E_R = W \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$

For Projected Detector: $g_1=0.118735$ phd/photon, $g_2=79.2291$ phd/electron

Fig.7. Hidden Photon Signal Model (40 keV)

Fig.8. Reconstructed Energy

LZ Projected Sensitivity: Hidden Photons

- Sensitivity Estimation: Hidden
 Photons
- Statistical Analysis: Profile
 Likelihood Ratio (PLR) Method
- Hidden Photon Mass (This Work)
 2-85 keV
- Experimental limits taken from XMASS 2018 paper [3]

LZ Projected Sensitivity: ALPs

- Sensitivity Estimation: ALPs
- Statistical Analysis: Profile
 Likelihood Ratio (PLR) Method
- ALP Mass (This Work) 2-85 keV

Results/Discussions

- Hidden Photon Sensitivity: (over the mass 2-85 keV/c²)
 - we expect more than ~2 order of magnitude improved sensitivity for (α'/α)
 - (α'/α) no larger than 2.9 x 10⁻²⁹ (Highest value at 34 keV, atomic binding effect)
- ALP sensitivity: (over the mass $2-85 \text{ keV/c}^2$)
 - g_{Ae} no larger than 2.8 x 10⁻¹⁴ (Highest value at 34 keV, atomic binding effect)
 - ~2 order of magnitude improvement

Questions?

References

- 1. K. Arisaka, P. Beltrame, C. Ghag, J. Kaidi, K. Lung, A. Lyashenko, R.D. Peccei, P. Smith, et al., Astropart. Phys. 44 (2013) 59, arXiv:1209.3810 [astro-ph.CO].
- 2. H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Lett. B 747, 331 (2015).
- 3. Abe, K. and Hiraide, K. and Ichimura, et al., Phys. Lett. B 787,153-158 (2018)
- 4. Joerg Jaeckel , Frascati Physics Series Vol. LVI (2012)
- 5. Paul Langacker, Reviews of Modern Physics, vol. 81,(2009)
- 6. M. Pospelov, A. Ritz, and M. B. Voloshin, Phys.Lett. B662, 53 (2008).
- 7. M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, JHEP 0911, 027 (2009).
- 8. G. Cowan, K. Cranmer, E. Gross, and O. Vitels, "Power-constrained limits", arXiv:1105.3166 [hep-ph]
- 9. D.S. Akerib, et al., Projected WIMP Sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment [https://arxiv.org/pdf/1802.06039.pdf]

Backup Slides

HP Minimal Model

- •Minimal Model: single new broken U(1) gauge symmetry
- •models with unbroken U(1) gauge symmetry result in a massless dark photon carrying a long-range interaction.
- •A massless dark photon, however, will experimentally be hard to distinguish from the Standard Model photon.

$${\cal L} \supset -rac{1}{4} F'^{\mu
u} F'_{\mu
u} + rac{1}{2} m^2_{A'} A'^{\mu} A'_{\mu} + \epsilon e A'^{\mu} J^{EM}_{\mu}$$

 ϵ

Kinetic Mixing

Factor

Kinetic Mixing

- * Tree level SM photon γ hidden photon γ' interaction is forbidden
- Simplest Case : by a loop of non-SM charged heavy particles, ψ'
- γ and γ' couple to them with strengths e and g_{D}
- Properties of ψ' particles :
 - they are charged; hence sensitive to EM interaction
 - have not been detected yet in experiments like LHC: mass scale should be above the weak scale
 - \blacksquare this mass scale constrains the coupling strength of γ' to γ
 - At Lower Energies < Weak Scale: ψ' can be integrated out.

Fig.5. Feynman diagram of kinetic mixing

Below Electroweak Scale

 $L_{\rm mediator} = \varepsilon e j^{\mu}_A A'_{\mu}$ kinetic EM hidden mixing factor Current photon field

LZ Projected Sensitivity: ALPs

- Sensitivity Estimation: ALPs
- Statistical Analysis: Profile Likelihood Ratio (PLR) Method
- ALP Mass (This Work):
 - 2-85 keV
 - \circ g_{Ae} no larger than 2.8 x 10⁻¹⁴
- Previous Work by LZ:
 - 1-40 keV
 - $^\circ$ $~~g_{Ae}$ no larger than 5.9 x 10 $^{-14}$

