The LUX-ZEPLIN (LZ) Experiment

F. Neves on behalf of the LZ collaboration

PASCOS 2017, 19-23 June

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA. TECNOLOGIA E ENSINO SUPERIOR

QUADRO DE REFERÊNCIA ESTRATÉGICO NACIÓNAL

Outline

- Dark matter: very brief overview;
- Using liquid xenon for direct detection of dark matter;
- The LZ experiment:
 - Description and timeline;
 - Backgrounds;
 - Sensitivity to WIMPs;
 - Sensitivity to Axion and ALPs;
 - Other physics.

Dark Matter evidence overview

Combining the evidence

ACDM model: 68.3%, 95.4%, and 99.7% confidence regions

- Extraordinary agreement in precision cosmology;
- Present Universe mostly made out of dark energy, dark matter, and small contribution from baryonic matter;

• We only understand 5% of the constituents of our universe!

Many candidate explanations to dark matter: e.g
 WIMPs, Axions, MOND, ...

Xenon as a WIMP target

• High density (2.9 g/cm³): manageable detector volumes (R_{WIMP} ~ 10⁻⁵-10⁻² event/kg/day);

- •High atomic number (A~131): good for spin-independent interactions; plus spindependent sensitivity (~1/2 odd isotopes in natural xenon);
- Allows easy/affordable scalability to ton-level detectors (LZ, XENON-1T);
- Allows self- shielding by selection of an inner fiducial volume while using the (instrumented) outer skin volume as a veto; LUX 201
- Natural xenon has no long-lived radioactive isotopes; plus Kr contamination can be easily reduced to ppt level;
- Low energy threshold (~1 keVee);
- •Nuclear recoil vs e⁻ly-ray discrimination by simultaneous detection of *prompt scintillation* and *charge* drift away of the interaction site by an electric field;

Liquid Xenon TPC

• (x,y) position reconstruction: from the S2 light pattern;

• **Depth of interaction (z)**: e⁻ drift time in the liquid (time difference between S2 and S1);

Prompt scintillation (S1).

 Proportional scintillation (S2): measurement of the e⁻ charge extracted from the liquid to the gas.

• S2/S1 depends on the ionising particle (nuclear/electron recoil): 99.7% ER/NR rejection @ 50% NR acceptance.

Sanford UG Research Lab

LZ timeline

The LZ Detector details

- 10 tonnes of Lxe:
 - > 7 ton active;
 - 5.6 fiducial;
- Will be installed in the same laboratory used for LUX and inside the same water tank;
- 494 PMTs (in the TPC) acquired in dual-gain;
- Gadolinium-loaded liquid scintillator veto;
- Instrumented skin region (additional veto)

The LZ Detector: LXe TPC

GAS PHASE AND

SECTION VIEW OF THE LXE TPC

Parameter	Baseline	Goal
Electroluminescence field (kV/cm)	10.2 (8 mm gas)	
Electron extraction probability	95%	99%
ΓPC drift field (kV/cm)	0.31	0.65
Electron drift velocity (mm/μs)	1.8	2.2
Maximum drift time (μs)	806	665
_ongitudinal diffusion (μs)	2.2	2.0
Fransverse diffusion (mm)	1.8	1.4
ER/NR discrimination	99.7	′%

1

The LZ Detector: light collection

TOP PMT array 241 3" PMTs arranged in a hexagonal configuration

3-inch Hamamatsu R11410 PMT

Bottom PMT array 253 3" PMTs arranged in a hexagonal-circular configuration to maximize light collection

				Diffuse + Specular model (DS)		
Property	Baseline	Optimistic		A	<i>n</i> PTFE	BHR
		807NX	0.961	1.73	0.961	
PTFE reflectivity - liquid	95%	97%		(>0.955)		(>0.955)
PTFE reflectivity - gas	80%	85%	NXT85	0.975	1.8	0.975
Average PMT QE	25%	28%		(>0.973)	110	(>0.973)
Grid reflectivity (liquid and gas)	20%	40%	LUX	0.978	1.79	0.978
Absorption length in liquid (m)	30	100		(>0.975)		(>0.975)
FV-averaged S1 PDE (α_1)	8.5%	13.3%	BHR – B i- H emispherical R eflectance. A – A lbedo.			

The LZ Outer Detectors

3 independent outer detectors (vetos), for γ with energies in the few MeV range and neutrons from (α ,n) reactions or created by cosmic-ray interactions:

- The instrumented "skin" of LXe outside the LXe TPC;
- Gd-loaded liquid scintillator (LAB) acrylic sections;
 7% light collection efficiency (130 PE @ 1MeV).
- Surrounding water tank (muon veto);

The LZ Detector: calibration

A rigorous calibration is mandatory for an unambiguous claim of direct detection of any hypothetical dark matter candidate:

Isotope	What	Purpose	Deployment
Tritium	β, Q = 18.6 KeV	ER band	Internal
^{83m} Kr ^{131m} Xe	β/γ, 32.1KeV and 9.4 KeV γ, 164keV	TPC (x,y,z), Xe skin	Internal
²²⁰ Rn	α's, various	Xenon skin	internal
AmLi	(α,n)	NR band	CSD
²⁵² Cf	Spontaneous fission	NR efficiency	CSD
⁵⁷ Co ²²⁸ Th ²² Na	γ, 122 keV γ, 2.615 MeV, etc 511 keV	Energy scale, TPC, OD sync	CSD
⁸⁸ YBe ²⁰⁵ BiBe ²⁰⁶ BiBe	n, 152 keV n, 88.5 keV n, 47 keV	Low energy NR response	External
DD	n, 2.450 keV n, 272 keV	NR light and charge yields	External

Baseline Calibration sources:

S1 and S2 (x,y,z) dependence (left) and electron lifetime (right), measured from S2(Z), using LUX ^{83m}Kr calib. data

Energy spectra (left) covered by the neutron calibrations and schematic representation of the setup for the DD calibration

PASCOS 2017, 19-23 June

LZ backgrounds

Background source	RE cts	NR cts
Detector components	6.2	0.07
Dispersed radionuclides (Rn, Kr, Ar)	911	_
Laboratory and cosmogenic	4.3	0.06
Fixed surface contamination	0.19	0.37
¹³⁶ Xe 2υββ	67.0	_
Neutrinos (υ-e, υ-A)	255	0.72
Total	1240	1.22
Total (99.5% ER desc., 50% NR eff.)	6.22	0.61
Total ER+NR background events	6.82	

signal-like background events in 1000 live-days

 Largest contribution comes from Rn, Followed by ν-e solar neutrino scattering and atmospheric ν-A scattering; NR + ER leakage (6 - 30 keV_{NR})

⁸B Background in LZ

Using PLR, neutrino background from solar ⁸B affects low-mass WIMPs only:
 The statistic shown represent 5x the expected ER background and 500x the expected ⁸B background for the 1000 days run)

LZ sensitivity to WIMPs

PLR used to estimate the sensitivity (further assumptions: conservative light collection of 7.5%/12.5%, electron life time of 859µs/2800µs and a n-fold trigger of 3/2 for the baseline and goal estimation respectively)

LZ sensitivity to Axions and ALPs

For 1000 live-days, 5.6 ton fiducial mass (LZ Baseline assumptions)

Axions

ALPs

across the mass range 1-40 keV.c⁻²

LZ Sensitivity to: other physics...

Elastic Scattering of Solar Neutrinos:

Expected 838 pp events, 69 events from ⁷Be and <10 from ¹³N (E_v<220 keV) in the 1.5 to 20 keVee window (LZ will be sensitive to neutrinos energies significantly lower than SAGE or BOREXINO);</p>

Coherent Nuclear Scattering of Solar Neutrinos:

Expected 7 events from ⁸B neutrinos (W/ a signal very similar to a 6 GeV WIMP);

Neutrino Magnetic Moment:

The LZ ~1 keV energy threshold suggests an increase in sensitivity of ~1 order of magnitude relative to the upper limit of 5.4x10⁻¹¹µ_B set by BOREXINO;

Neutrinoless Double Beta Decay:

LZ has the potential to a sensitivity limit on the 0vββ half-life of ¹³⁶Xe of 1×10²⁶ y, 90% C.L. (the current half-live limit is 1.07x10²⁶ y set by KamLAND-Zen);

Sterile Neutrinos (not part of the main scientific goal):

The excellent spatial resolution of the LZ TPC allows the spatial pattern of electron neutrino oscillation into a sterile neutrino from a 5 MCi ⁵¹Cr electron neutrino source to be detected.

Electrophilic WIMPs:

> Axial-vector WIMP-electron scattering $\sigma_{we} \ge 6x10^{-38} \text{ cm}^2$ (w/ background subtraction). (The interpretation of the DAMA excess implies a $\sigma_{we} = 2x10^{-32} \text{ cm}^2$ @ M_w=50 GeV/c²).

The LZ collaboration

36 institutions – 250 scientists, engineers, and technicians

- Center for Underground Physics (South Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) STFC Rutherford Appleton Lab (UK)
- 6) University College London (UK)
- 7) University of Bristol (UK)
- 8) University of Edinburgh (UK)
- 9) University of Liverpool (UK)
- 10) University of Oxford (UK)
- 11) University of Sheffield (UK)
- 12) Black Hill State University (US)

- 13) Brookhaven National Lab (US)
- 14) Brown University (US)
- 15) Fermi National Accelerator Lab (US)
- 16) Lawrence Berkeley National Lab (US)
- 17) Lawrence Livermore National Lab (US)
- 18) Northwestern University (US)
- 19) Pennsylvania State University (US)
- 20) SLAC National Accelerator Lab (US)
- South Dakota School of Mines and Technology (US)
- 22) South Dakota Science and Technology Authority (US)
- 23) Texas A&M University (US)

- 24) University at Albany (US)
- 25) University of Alabama (US)
- 26) University of California, Berkeley (US)
- 27) University of California, Davis (US)
- 28) University of California, Santa Barbara (US)
- 29) University of Maryland (US)
- 30) University of Massachusetts (US)
- 31) University of Michigan (US)
- 32) University of Rochester (US)
- 33) University of South Dakota (US)
- 34) University of Wisconsin Madison (US)
- 35) Washington University in St. Louis (US)
- 36) Yale University (US)