

Alfredo Tomás Imperial College London on behalf of the LZ collaboration

LZ collaboration

38 institutions; 250 scientists, engineers, and technicians

- 1) IBS-CUP (Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) Royal Holloway University of London (UK)
- 6) STFC Rutherford Appleton Lab (UK)
- 7) University College London (UK)
- 8) University of Bristol (UK)
- 9) University of Edinburgh (UK)
- 10) University of Liverpool (UK)
- 11) University of Oxford (UK)
- 12) University of Sheffield (UK)
- 13) Black Hill State University (US)
- 14) Brandeis University (US)

- 15) Brookhaven National Lab (US)
- 16) Brown University (US)
- 17) Fermi National Accelerator Lab (US)
- 18) Lawrence Berkeley National Lab (US)
- 19) Lawrence Livermore National Lab (US)
- 20) Northwestern University (US)
- 21) Pennsylvania State University (US)
- 22) SLAC National Accelerator Lab (US)
- 23) South Dakota School of Mines and Technology (US)
- 24) South Dakota Science and Technology Authority (US)
- 25) Texas A&M University (US)
- 26) University at Albany (US)

Brandeis CM, July 2018

- 27) University of Alabama (US)
- 28) University of California, Berkeley (US)
- 29) University of California, Davis (US)
- 30) University of California, Santa Barbara (US)
- 31) University of Maryland (US)
- 32) University of Massachusetts (US)
- 33) University of Michigan (US)
- 34) University of Rochester (US)
- 35) University of South Dakota (US)
- 36) University of Wisconsin Madison (US)
- 37) Washington University in St. Louis (US)
- 38) Yale University (US)

A WIMP search with 10 tonnes of Liquid Xenon

Aims and challenges with respect to ZEPLIN & LUX:

- Near two orders of magnitude increase on target mass
- Maintain TPC performance (and get over LUX limitations: High Voltage and PTFE-charging)
- Much more aggressive background control

Berlin, Aug 29th 2018

TeVPA2018

Two veto systems: Xe skin PMTs & Outer Detector

TPC Top Skin Upper Corner: 93 1" PMTs

Berlin, Aug 29th 2018

TeVPA2018

LZ Technical Design Report, arXiv:1703.09144

Veto System Performance

WIMP-like nuclear recoil backgrounds in 6-30 keV region of interest

Fiducial would be reduced from 5.6 to 3.2 tonnes w/o Outer Detector & Xe skin vetoes.

Berlin, Aug 29th 2018

TeVPA2018

Alfredo Tomás

6

Simulated LZ full exposure with 40 GeV/c² WIMP 1000 days, 5.6 Tons

Berlin, Aug 29th 2018

TeVPA2018

Alfredo Tomás⁷

Berlin, Aug 29th 2018

TeVPA2018

Alfredo Tomás

8

Berlin, Aug 29th 2018

TeVPA2018

Background control strategy

- Radio-assay campaign for detector materials
 - \circ γ -screening, ICP-MS, NAA.
- Charcoal chromatography to remove ⁸⁵Kr and ³⁹Ar
 - Dedicated facility at SLAC
 - Final ^{nat}Kr/Xe 0.015 ppt (g/g)
- Rn emanation screening campaign
 - Four Rn screening sites
 - $\circ \quad Target \ Rn \ activity = 2 \ \mu Bq/kg$
- Rn daughters (plate-out)
 - TPC Assembly in Rn-reduced cleanroom to limit daughter recoils on surfaces
 - Screening or Rn daughters on exposed surfaces (coupon program)
 - $\circ \quad \text{Rn-daughter plate on TPC walls} < 0.5 \ \text{mBq}/\text{m}^2$
- Dust
 - Cleanliness controls. Microscope screening of dust density (coupon program)
 - \circ Dust < 500 ng/cm² on all LXe wetted surfaces

Berlin, Aug 29th 2018

TeVPA2018

Titanium Cryostat

- Intensive R&D program identified low activity titanium material (Astropart. Phys. 96 (2017) 1-10)
- Arrived at SURF May 14, 2018.

Berlin, Aug 29th 2018

TeVPA2018

PMT Array Assembly at Brown University

- Above: 'PALACE', PMT dark electrical testing, shipping housing for LZ PMT arrays (~2 x 250 PMTs).
- Witness plates for dust surveillance over whole assembly; measured dust levels met the requirement.
- 'In-house' manufactured (Imperial College London) low background and clean PMT bases
- LXe temperature calibration of each tube-base pair. Detailed Xe VUV light calibration of 35 tubes (Astropart. Phys. 102 (2018) 56-66:)

Berlin, Aug 29th 2018

TeVPA2018

- Automated loom for weaving SS wire grids.
- 2 Full size (1.5 m diameter) prototype grids complete. Final grids under production.
- Post-weaving wire treatment to reduce spurious electron emission (Astropart.Phys. 103 (2018) 49-61)
 - Benefit confirmed on small-size grid prototype in liquid xenon at SLAC.

Berlin, Aug 29th 2018

TeVPA2018

TPC field cage

- All components are in hand
- Trial assembly successful
- Field cage assembly at SURF in fall 2018

Berlin, Aug 29th 2018

TeVPA2018

TPC cathode high voltage

- Tests in liquid argon successfully reached 120 kV(50 kV required).
- Extensive Liquid Xenon prototyping at SLAC.
- High voltage grading structure for cathode assembled at LBL

Model of test structure in liquid argon

Liquid argon cathode high voltage test facility at LBNL

TeVPA2018

15

Recent and projected LZ timeline

Berlin, Aug 29th 2018

TeVPA2018