

30. DRILLING WITH COMPRESSED AIR, HOMESTAKE MINE, LEAD, S. D.

Expected Background in the LZ Experiment

Maria Elena Monzani on behalf of the LZ Collaboration

UCLA, Feb 19, 2016

LZ Detector Overview

Selected Experimental Challenges

- Backgrounds, backgrounds, backgrounds:
 - External (PMT, Cryostat, etc.): select materials carefully
 - Internal (Kr + Rn): Kr removal by charcoal chromatography
 - Cosmogenic+Laboratory: experiment deep underground
 - Irreducible: double beta decay, solar+atm. neutrinos
- Maximize WIMP target mass:

- Self-shielding necessary (Xe100-LUX: fiducial fraction ~1/2)
- Veto and LXe skin have a role in expanding fiducial region
- ER and NR Calibrations:
 - Self-shielding complicates matter: source injections
 - LUX: unprecedented accuracy for ER/NR response
 - LZ sensitivity estimates based on precise calibrations

Backgrounds – Detector Materials

Populate edges: Skin and Outer detector tag

External Backgrounds

- Activity intrinsic to the detector construction materials
 - Main concerns: PMTs, PMT Bases, Cryostat, and PTFE
 - Goal: External Backgrounds <10% of Physics Backgrounds</p>
 - Comprehensive material screening program complete: all components at or below goals (see K. Oliver-Mallory's talk)
- Complete simulations of External Backgrounds:

- Simulation chain based on LZSim (Geant4-framework)
- Detector geometry updated to latest engineering model
- Each contaminant estimated from assay results
- S1/S2 response modeled using NEST-based simulations

How to maximize the WIMP target mass?

• Two-component outer detector:

5

- 0.61 m thick Gd-loaded scintillator
- instrumented Xenon "skin"

Tag neutrons and gammas!

Vetoed by Gd-LS and Skin

Single NR scatter in TPC

External Backgrounds

 Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Item	Mass kg	U mBq/kg	Th mBq/kg	⁶⁰ Co mBq/kg	⁴⁰ K mBq/kg	n/yr	ER cts	NR cts
R11410 PMTs	90.8	3.78	3.40	2.85	17.17	79	2.11	0.010
R11410 bases	2.60	76.3	30.5	2.33	82.6	44	0.36	0.003
TPC PTFE	275	0.02	0.03	≈0	0.12	34	0.08	0.010
Cryostat vessels	2406	0.11	0.25	0.07	0.56	124	0.53	0.010
Other components	1211	1.00		1-1-1		14946	9.59	0.040
Total components (Before S2/S1 discrimination)							12.7	0.073

Backgrounds – Uniform through volume

Solar (pp)

Neutrino Backgrounds

• Elastic v-e interactions from Solar neutrinos:

- Sources: pp, ⁷Be, ¹³N (signal is an ER recoil)
- Coherent elastic v-A interactions (irreducible background):
 - Solar Neutrinos: ⁸B (below nominal threshold) and hep
 - Atmospheric and diffuse supernova neutrinos
- Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

Item	Mass	U	Th	⁶⁰ Co	40K	n/yr	ER	NR
	kg	mBq/kg	mBq/kg	mBq/kg	mBq/kg		cts	cts
¹³⁶ Xe 2νββ								0.00
Astrophysical v counts (pp $+^{7}Be + {}^{13}N$)							255	0.00
Astrophysical v counts (⁸ B)							0.00	0.00
Astrophysical v counts (hep)						0.00	0.21	
Astrophysical v counts (diffuse supernova)						0.00	0.05	
Astrophysical v counts (atmospheric)						0.00	0.46	
Subtotal (Physics backgrounds) (Before S2/S1 discrimination)							322	0.72

Uniform ER Internal Backgrounds

- Kr, Ar requirement: 0.015 ppt (g/g) ^{nat}Kr, 0.45 ppb (g/g) ^{nat}Ar
 - Demonstrated 2-pass ^{nat}Kr reduction at 10⁹ (10⁷ required)
 - Kr removal process also efficient at eliminating Ar
- Gas charcoal chromatography system @ SLAC

Gas system, pumps, column

5

Condenser

Sampling System

Uniform ER Internal Backgrounds

- Kr, Ar requirement: 0.015 ppt (g/g) ^{nat}Kr, 0.45 ppb (g/g) ^{nat}Ar
 - Demonstrated 2-pass ^{nat}Kr reduction at 10⁹ (10⁷ required)
 - Kr removal process also efficient at eliminating Ar
- Radon requirement: 2.0 μ Bq/kg ²²²Rn, 0.2 μ Bq/kg ²²⁰Rn

- Extensive Rn-assay campaign mapped out and initiated
- Current requirement extrapolated from other experiments:
 - Total Rn [20 mBq] ≈ achieved by LUX in 380 kg
 - Rn concentration [2 μ Bq/kg] \approx achieved by EXO200
- Surface Contamination: Radon Daughters (²¹⁰Pb) and dust
 - Concerns: ²¹⁰Pb on PTFE and dust on all TPC surfaces
 - LZ requirement: 500 ng/cm² (goal: 5 ng/cm²)
 - Compare with other experiments: EXO 70 ng/cm², SNO 20 ng/cm², Borexino 1 ng/cm²

Uniform ER Internal Backgrounds

 Expected counts in 1,000 live days in an indicative 5.6-tonne fiducial mass in [1.5-6.5] keV_{ee} (ER) and [6-30] keV (NR):

5

Item	Mass kg	U mBq/kg	Th mBq/kg	⁶⁰ Co mBq/kg	⁴⁰ K mBq/kg	n/yr	ER cts	NR cts
²²² Rn (2.0 µBq/kg)	1440	-	1	-	11325		783	· •
220 Rn (0.2 μ Bq/kg)	1.91		11.0+2		1 - 6	1.1.2	129	n éjen
^{nat} Kr (0.015 ppt g/g)	9	19	-	÷		÷	24.5	1.
^{nat} Ar (0.45 ppb g/g)	345			T e	- 40	*	2.47	÷.
Dispersed radionuclides (Rn, Kr, Ar) (Before S2/S1 discrimination)							938	

• PLR analysis: very powerful at rejecting these backgrounds

High Statistics Calibrations from LUX

1,000 days of simulated LZ (5.6 T)

Projected Sensitivity: Spin Independent

Hypothetical ²²²Rn Scenarios

Conclusions

- LZ material screening complete:
 - All components are at or below goals
- Irreducible NR background, dominated by solar and atmospheric neutrinos

 PLR can still help with ⁸B neutrinos
- Background estimates dominated by Rn:
 - Large uncertainties on Rn emanation
 - Extensive Rn-assay campaign started
 - PLR analysis very effective at dealing with ER background: sensitivity is largely unaffected by final Rn value
- Very robust sensitivity estimate:
 - 1-2×10⁻⁴⁸ cm² at 40 GeV
 - Start probing the ⁸B neutrino floor