

THE LZ DARK MATTER EXPERIMENT

Luiz de Viveiros Penn State University

LUX + ZEPLIN = LZ

ZEPLIN-III LUX

ZEPLIN pioneered WIMP-search with 2-phase Xe. 6 kg LXe fiducial, 3.9x10⁻³³ cm²

Most sensitive WIMP detector. 100 kg LXe fiducial, 1.1x10⁻⁴⁶ cm² Scale-up using demonstrated technology and experience. 5600 kg LXe fiducial

THE LZ COLLABORATION

LZ Collaboration Meeting SLAC, March 2017

- 1. Black Hills University
- 2. Brookhaven National Laboratory
- 3. Brown University
- 4. Fermi National Accelerator Laboratory
- 5. Lawrence Berkeley National Laboratory (LBNL)
- 6. Lawrence Livermore National Laboratory (LLNL)
- 7. Northwestern University
- 8. Penn State University
- 9. SLAC National Accelerator Laboratory
- 10. South Dakota School of Mines & Technology

- 11. South Dakota Science and Technology Authority
- 12. Texas A&M
- 13. University at Albany SUNY
- 14. University of Alabama
- 15. University of California Berkeley
- 16. University of California Davis
- 17. University of California Santa Barbara
- 18. University of Maryland
- 19. University of Massachusetts Amherst
- 20. University of Michigan
- 21. University of Rochester
- 22. University of South Dakota
- 23. University of Wisconsin

- 24. Washington University in St. Louis
- 25. Yale University
- 26. Center for Underground Physics (Korea)
- 27. LIP Coimbra (Portugal)
- 28. MEPHI (Russia)
- 29. Imperial College London (UK)
- 30. STFC Rutherford Appleton Laboratory (UK)
- 31. University College London (UK)
- 32. University of Bristol (UK)
- 33. University of Edinburgh (UK)
- 34. University of Liverpool (UK)
- 35. University of Oxford (UK)
- 36. University of Sheffield (UK)

SANFORD UNDERGROUND RESEARCH FACILITY (SURF) IN LEAD, SD

de Viveiros - Penn State

BLV2017

May 2017 v3 #4

LZ: GO BIG OR GO HOME

BLV2017

LZ DESIGN OVERVIEW (1)

- 3-component veto system:
 - Water tank
 from LUX
 - Gd-loaded
 scintillator
 - Instrumented
 LXe Skin

LZ DESIGN OVERVIEW (2)

de Viveiros - Penn State

May 2017 v3 #7

DUAL PHASE XENON TPC

- Excellent 3D imaging capability
 - •Z position from S1 S2 timing
 - •XY positions from S2 light pattern

Charge / Light Ratio => Signal vs Background discrimination

(charge)

S2

Time

How to maximize the WIMP target mass?

•Fiducial volume => low backgrounds

XENON "SKIN" VETO

May 2017 v3 # 10

OUTER DETECTOR: GAMMA/NEUTRON VETO SYSTEM

- •Suppression of neutron-induced nuclear recoil rate \rightarrow maximize fiducial volume.
- Segmented acrylic tanks
- •Liquid scintillator: Gd-loaded (0.2%) LAB (linear alkyl benzene)
- •Minimum thickness ~ 0.61 m
- Total LAB Mass: ~21 tonnes
- •120 8" PMTs

How to maximize the WIMP target mass?

•Three-component veto system:

Xe-TPC only

- Water tank
- •Xenon "skin"
- Gd-loaded scintillator

Tag neutrons and gammas → in situ monitoring of residual backgrounds!!!

TPC + skin + Gd-scint.

•Radon is the dominant background!

Intrinsic Contamination Backgrounds	Mass (kg)	Composite	U early	U late	Th early	Th late	Co60	K40	n/yr (inc.	ER (cts)	NR (cts)
Linner DUT Structure	40.5	~	(mBa/ka)	(mBa/ka)	(mBq/kg)	(mBa/ka)	(mBq/kg)	(mBa/ka)	S.F. rej.)	0.05	(w/ SF rej.)
Upper PMT Structure	40.5	Y Y	3.90	0.23	0.49	0.36	0.00	0.01	2.00	0.05	0.000
Lower PMT Structure	09.9	1 V	2.40	0.15	0.30	0.24	0.00	0.91	0.00	0.05	0.001
R11410 3" PM IS	91.9	I V	71.03	3.20	3.12	2.99	2.82	13.41	81.83	1.40	0.013
R11410 PMT Bases	2.8	T	545.95	70.20	31.72	30.54	2.33	82.00	48.20	0.39	0.005
R87782" PMTs	0.1	T	137.50	59.38	10.88	10.88	10.20	412.50	52.80	0.13	0.008
R8520 Skin 1" PM1s	2.2	T	00.50	5.19	4.75	4.75	24.20	332.70	4.60	0.02	0.001
R8520 Skin PMT Bases *	0.3	Ţ	765.90	79.14	38.12	34.59	3.40	128.23	0.84	0.01	0.001
PMT Cabling	103.5	Y	29.83	1.4/	3.31	3.15	0.05	33.14	2.05	1.43	0.000
TPC PTFE	193.0	N	0.02	0.02	0.03	0.03	0.00	0.12	23.64	0.06	0.009
Grid Wires	0.75	N	1.20	0.27	0.33	0.49	1.60	0.40	0.02	0.00	0.000
Grid Holders	62.2	Y	1.20	0.27	0.33	0.49	1.60	0.40	6.33	0.27	0.002
Field Shaping Rings	91.6	Y	5.41	0.09	0.28	0.23	0.00	0.54	10.83	0.23	0.004
TPC Sensors	0.90	Y	21.09	13.51	22.89	14.15	0.50	26.29	24.77	0.01	0.002
TPC Thermometers	0.06	Y	335.50	90.46	38.48	25.02	7.26	3 359	1.49	0.05	0.000
Xe Recirculation Tubing	15.1	Y	0.79	0.18	0.23	0.330	1.05	0.30	0.64	0.00	0.000
HV Conduits and Cables	137.7	Y	1.9	2.0	0.5	0.6	1.4	1.2	4.9	0.04	0.001
HX and PMT Conduits	199.6	Y	1.25	0.40	2.59	0.66	1.24	1.47	5.33	0.06	0.001
Cryostat Vessel	2406.1	N	1.59	0.11	0.29	0.25	0.07	0.56	123.70	0.63	0.013
Cryostat Seals	33.7	Y	73.91	26.22	3.22	4.24	10.03	69.12	38.78	0.45	0.002
Cryostal Insulation	23.8	Y	18.91	18.91	3.45	3.45	1.97	51.65	69.83	0.43	0.007
Cryostat Tellon Liner	67.0	N	0.02	0.02	0.03	0.03	0.00	0.12	8.21	0.00	0.001
Outer Detector Tanks	3199.3	Y	0.16	0.39	0.02	0.06	0.04	5.36	77.96	0.45	0.001
Liquid Scintillator	17640.3	Y	0.01	0.01	0.01	0.01	0.00	0.00	14.28	0.03	0.000
Outer Detector PMTs	204.7	Y	570	470	395	388	0	534	7 587	0.01	0.000
Outer Detector PMT Supports	770.0	N	1.20	0.27	0.33	0.49	1.60	0.40	14.30	0.00	0.000
222Rn (2.0 µBq/kg)					0	0.000				722	-
220Rn (0.1 µBq/kg)				1						122	-
natKr (0.015 ppt g/g)										24.5	-
natAr (0.45 ppb g/g)										2.47	-
210Bi (0.1 µBq/kg)										40.0	
Laboratory and Cosmogenics										4.8	0.06
Fixed Surface Contamination										0.19	0.37
Subtotal (Non-v counts)										922	0.50
Physics Backgrounds											
136Xe 2v88										67	0
Astrophysical v counts (np+7Re+13N										255	0
Astrophysical v counts (pp 1 De 101										255	0**
Astrophysical v counts (Uan)										0	0.21
Astrophysical v counts (risp)					0	0.05					
Astrophysical v counts (ultruse superi	(0 va)									0	0.05
Sublotal (Physics backgrounde)										202	0.40
Total										1 240	1.22
Total (with 99.5% EP discrimination	0% NR officie	000								6.22	0.61
Total (with 55.0% ER dischinination, c	No 75 Hire Childh	sticy								0.22	83

•Radon is the dominant background!

Intrinsic Contamination Backgrounds	Mass (kg)	Composite	U early	U late	Th early	Th late	Co60	K40	n/yr (inc.	ER (cts)	NR (cts)
Linner DUT Circulum	40.5	-	(mBa/ka)	(mBa/ka)	(mBa/kg)	(mBa/ka)	(mBa/ka)	(mBa/ka)	S.F. rej.)	0.05	(w/ SF rej.)
Upper PMT Structure	40.5	v.	3.90	0.13	0.49	0.30	0.00	0.01	6.06	0.05	0.000
Did 440 2ª DATE	01.0	v	71.62	2.20	2.12	2.00	2.82	15.41	0.00	1.46	0.001
DIIIIO DAT Pages *	2.9	v	545.05	76.25	21 72	2.55	2.02	82.56	48.20	0.20	0.005
D0770 2" DATE	61	v	137.50	50 38	16.88	16.88	16.25	412.50	52.80	0.13	0.003
Deson Skin 1" DATe	22	v	60.50	5 10	4 75	4 75	24.20	332 76	4.60	0.02	0.001
D8520 Skie DMT Beese *	0.3	v	765.90	79 14	38 12	34 59	3.40	128 23	6.84	0.01	0.001
PMT Cabling	103.5	Ý	29.83	1 47	3.31	3 15	0.65	33 14	2.65	1.43	0.000
TPC PTEF	193.0	N	0.02	0.02	0.03	0.03	0.00	0.12	23.64	0.06	0.009
Grid Wires	0.75	N	1.20	0.27	0.33	0.49	1.60	0.40	0.02	0.00	0.000
Grid Holders	62.2	Y	1.20	0.27	0.33	0.49	1.60	0.40	6.33	0.27	0.002
Field Shaning Rings	91.6	Ý	5.41	0.09	0.28	0.23	0.00	0.54	10.83	0.23	0.004
TPC Sensors	0.90	Ý	21.09	13.51	22.89	14.15	0.50	26.29	24.77	0.01	0.002
TPC Thermometers	0.06	Ý	335.50	90.46	38.48	25.02	7.26	3 359	1.49	0.05	0.000
Xe Recirculation Tubing	15.1	Y	0.79	0.18	0.23	0.330	1.05	0.30	0.64	0.00	0.000
HV Conduits and Cables	137.7	Y	1.9	2.0	0.5	0.6	1.4	1.2	4.9	0.04	0.001
HX and PMT Conduits	199.6	Y	1.25	0.40	2.59	0.66	1.24	1.47	5.33	0.06	0.001
Cryostat Vessel	2406.1	N	1.59	0.11	0.29	0.25	0.07	0.56	123.70	0.63	0.013
Cryostat Seals	33.7	Y	73.91	26.22	3.22	4.24	10.03	69.12	38.78	0.45	0.002
Cryostal Insulation	23.8	Y	18.91	18.91	3.45	3.45	1.97	51.65	69.83	0.43	0.007
Cryostat Tellon Liner	67.0	N	0.02	0.02	0.03	0.03	0.00	0.12	8.21	0.00	0.001
Outer Detector Tanks	3199.3	Y	0.16	0.39	0.02	0.06	0.04	5.36	77.96	0.45	0.001
Liquid Scintillator	17640.3	Y	0.01	0.01	0.01	0.01	0.00	0.00	14.28	0.03	0.000
Outer Detector PMTs	204.7	Y	570	470	395	388	0	534	7 587	0.01	0.000
Out Datactor Phil Capports	770.0	N	1.20	0.27	0.33	0.49	1.60	0.40	14.30	0.00	0.000
222Rn (2.0 µBq/kg)						1	1			722	-
220Rn (0.1 µBq/kg)				1						122	
hatter (0.015 ppt g/g)				-					· · · ·	21.5	-
natAr (0.45 ppb g/g)										2.47	
210Bi (0.1 µBq/kg)										40.0	· · · ·
Laboratory and Cosmogenics										4.8	0.06
Fixed Surface Contamination										0.19	0.37
Subtotal (Non-v counts)										922	0.50
Physics Backgrounds											
136Xe 2v88	-									67	0
Astrophysical v counts (pp+7Be+13N)										255	ő
Astrophysical v counts (8B)										0	0**
Astrophysical v counts (Hen)										0	0.21
Astrophysical v counts (diffuse superr	iova)									0	0.05
Astrophysical v counts (atmospheric)	222									0	0.46
Subtotal (Physics backgrounds)										322	0.72
Total										1 240	1.22
Total (with 99.5% ER discrimination, 5	50% NR efficie	ency)								6.22	0.61
										6	83

RN EMANATION

- Rn (and Kr) dominant internal radioactive background
- Emanates from most materials
- •2 μBq/kq requirement, 0.1 μBq/kq goal
- •Four separate measurements systems, ~0.1 mBq sensitivity
- Main assembly laboratory at SURF will have reduced radon air system

PERFORMANCE DRIVERS

Performance requirements

- •Baseline: Fully expect these to be met
- •Goals: What we are aiming for

	Achieved in LUX (current best)	LZ Baseline	LZ Goal
²²² Rn (µBq/kg)	~30 (~3 in EXO-200)	2	0.1
Drift Field (V/cm)	180 V/cm (667 V/cm Panda-X)	310	650
Electron lifetime (µs)	> 1000	850	2800
Light Collection	0.12	0.075	0.12
Single phe efficiency	0.95	0.9	1.0
N-fold coincidence	2	3	2

DETECTOR PROTOTYPING

- •Extensive prototyping program:
 - Testing in liquid argon, primarily of HV elements at LBNL
 - System test platform at SLAC
 - Phase I Ongoing: ~100 kg of LXe TPC; grids and fields R&D; circulation system testing; software development.
 - Phase II: Large Xe gas vessel; full scale grids.

EXTENSIVE CALIBRATIONS

- Challenge for ton-scale detectors: Self-shielding complicates matters.
 Solution: injected sources!
- •LUX has led the way to detailed calibrations. LZ will build on this and do more.

SIGNAL AND BACKGROUND

Advanced analysis procedure PDFs for PLR

PROJECTED SENSITIVITY - SPIN INDEPENDENT

•The 'ultimate' direct Dark Matter detector: Approaches coherent neutrino scattering background! (LZ 5.6 T, 1000 live days)

BLV2017

PROJECTED SENSITIVITY - SPIN INDEPENDENT

•The 'ultimate' direct Dark Matter detector: Approaches coherent neutrino scattering background! (LZ 5.6 T, 1000 live days)

•LZ high sensitivity and low backgrounds open the door to a host of measurements other than WIMPs. For instance, neutrinos are not just newly relevant background, they become an interesting signal on their own!

	Dark Matter	Neutrinos
Nuclear Recoils	 WIMPs Low Mass WIMPs (S2-only analysis) 	 Coherent Neutrino-Nucleus Scattering (CNNS) of Solar and Nearby Supernova Neutrinos
Electron Recoils	 Axions Electrophilic WIMPs 	 Solar Neutrinos Double Beta Decays Neutrino Magnetic Moment Sterile Neutrinos (requires source; after LZ science run)

AXIONS AND ALPS

"Axioelectric" effect - ER energies ≤ few keV

Spectrum peaks at particle mass

1000 live-days, 5.6 ton fiducial mass

Neutrinos

- Double Beta Decay
 - $0\nu\beta\beta$: 7 tonnes active LXe \rightarrow 630 kg of ¹³⁶Xe (9% natural abundance)
 - 2vββ: ~70 events WIMP Search Energy Range 1.5-6.5 keVee
- Solar pp neutrinos
 - Detected via electron elastic scattering
 - Test of solar models, neutrino models
 - ~250 solar pp events

- Coherent Neutrino-Nucleus Scattering (CNNS): Nuclear Recoils
 - 8B Recoils mimic low mass WIMPs
 - Expect ~7 8B events and 0.5 events from others
 - DSN and atmospheric neutrinos will become the dominant background for experiments beyond LZ.

LZ TIMELINE

Year	Month	Activity
2012	March September	LZ (LUX-ZEPLIN) collaboration formed DOE CD-0 for G2 dark matter experiments
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK Begin long-lead procurements (Xe, PMT, cryostat)
2016	April	DOE CD-2/3b approval, baseline
2017	February	DOE CD-3 approval, fabrication start
2017	March	LUX removed from underground
2017	August	Begin preparations for surface assembly @ SURF
2018	June	Begin underground installation
2019		Underground installation
2020	April	Start operations
2025+		Planning on 5+ years of operations

CONCLUSION

- •LZ benefits from excellent LUX understanding of backgrounds and calibration techniques
- Project well underway, with extensive prototype program ongoing and imminent start of construction
- •Will explore significant fraction of available phase space:
 - •Baseline WIMP sensitivity: 2.3 × 10⁻⁴⁸ cm² @ 40 GeV/c² and approaching neutrino floor
- Non-WIMP physics reach

de Viveiros - Penn State

May 2017 v3 #26

THANK YOU!

de Viveiros - Penn State

May 2017 v3 #27