The LZ Photoneutron Calibration Source

Andreas Biekert

UC Berkeley APS April Meeting April 15, 2019

on behalf of the LZ Collaboration

The LZ Collaboration

37 institutions; 250 scientists, engineers, and technicians

The LZ detector is being built at SURF in Lead, SD

How LZ Works

- Energy deposited by particle interactions
 - S1 light: prompt scintillation
 - S2 light: electroluminescence from drifted electrons
- 3D position reconstruction
- Discrimination between electron recoils (ERs) and nuclear recoils (NRs)
- Possibility of low energy S2 only analysis
 - complicated by lack of discrimination

Low Energy Nuclear Recoil Backgrounds

LZ sensitivity paper: arXiv:1802.06039

* after outer detector and skin vetoes applied, before efficiency and S1 selection cuts

** multiple low-energy NR calibrations planned; see TDR

Photoneutrons

- Match gamma energy to Q for low energy neutrons
- First order: monoenergetic neutrons from monoenergetic gammas
- Process has fairly small cross section

E_{m}	\propto	E_{\bullet}	+	O	
L_n	\mathbf{x}	L_{γ}	\top	$\mathbf{\mathcal{A}}$	

$$N_{\gamma}: N_n \sim 10^4: 1$$

 ${}^{9}\text{Be} + \gamma \rightarrow {}^{8}\text{Be} + n \quad (Q = -1.667 \text{ MeV})$

Overview: G. F. Knoll. Radiation Detection and Measurement. (2000). Proposed as DM

calibration: J. I. Collar. *PRL*, 110(21), 2013.

Gamma Source	Neutron Energy [keV]	Xenon Recoil Endpoint [keV]	
⁸⁸ Y	153	4.6	This talk
²⁰⁵ Bi	88.5	2.7	
²⁰⁶ Bi	47.5	1.4	Future work
¹²⁴ Sb	22.5	0.7	

A Photoneutron Calibration Source

What Could Go Wrong?

- Radiation from YBe source:
 - 1. 3.7 MBq ⁸⁸Y MeV-scale gammas
 - 2. 270 neutrons per second
 - 3. MeV-scale gammas from neutron capture

- Key questions about event pileup:
 - Will the total event rate overwhelm matching of S1s and S2s from photoneutron events?
 - Will there be a well-defined endpoint in the photoneutron single scattering spectrum?
 - Will we be able to distinguish signals from backgrounds such as delayed electron noise?
 e.g. <u>P. Sorensen and K. Kamdin. JINST, 13 P02032, 2018.</u>

Current Simulation Approach

- Full model of LZ in a GEANT4-based simulation
 - ⁸⁸Y gammas directly from decay in GEANT4
 - Photoneutrons from virtual gamma vectors
 - Sample locations and momentumenergy relation more accurately
 - First-order approximation from photoneutron cross section to scale datasets together

The Total Event Rate

- No cuts on events after postprocessing
- 3.7 MBq ⁸⁸Y decay gammas main source of event rate
- Gamma rate from neutron capture coupled to photoneutron rate (1st bin)
- Source events towards top of TPC, so less time between S1 and S2
 - Define small fiducial region towards the top of the detector as signal region

The Signal Region

- Signal region looks great!
- S2 only (no S1 detected) events shown, but not the focus of this talk

Calibrating Expected Signals

- What 24 hours of calibration data could look like
- Radiogenic detector backgrounds negligible in fiducial region (<< 1 Cts / day)
- Nice overlap with coherent neutrino scattering signal region, mainly from ⁸B solar neutrinos

Summary

- Incorporate full optical response, electronics response, and analysis framework into simulation analysis
 - e.g. "LZ Mock Data Challenge 3" happening soon
- Incorporate more sophisticated event overlap and delayed electron noise in simulations
- Consider physics simulation accuracy e.g. <u>A. E. Robinson. PRC, 89(3), March 2014.</u>
- We will have a physical source later this year

Special Thanks

- Lawrence Berkeley National Lab
- LZ Collaboration
 - Specifically: Junsong Lin, Quentin Riffard, Peter Sorensen, Rick Gaitskell, Dan McKinsey
- NSF GRFP Program for support

Backup Slides

Outgoing Neutron Spectrum

 180 photoneutrons per second leave the tungsten shield block

17

Mean z of Events

- Largest z-position of each event (single and multiple scatters)
- Use mean z for back of the envelope Poisson calculation of event overlap fraction
- Mean z: -160 mm
- Mean drift time 94 µs (assuming uniform drift field)

Fiducial Volume

- Single scattering events in signal region
- Consider NRs near endpoint (4.6 keVnr)

Signal Energy Spectrum in LXe

 MC events from slide 11 and 12 before detector response effects applied

Pushing to Lower Energies

- S1+S2 events are mostly > 10 e-
 - Confusion with delayed electron events less likely (at toy MC level)
- S2 only spectrum needs more detailed simulation to understand delayed electron effect

 S2 only (no S1 detected) events shown, but not the focus of this talk

