

Outer Detector

Bjoern Penning

for the

LUX-ZEPLIN Collaboration

- **Motivation**
- A WIMP scattering in the central Xe of a noble liquid detector will not deposit energy in the surrounding materials
- Backgrounds induced by detector material and cosmic muons:
 - y-ray scatters out of detector while inducing 0 ER
 - neutron scatters out while inducing NR 0
 - \rightarrow need to detect escaping particle
- Surround central TPC with three active layers to reduce backgrounds:
 - Instrumented Xe 'skin' to veto y-rays Ο
 - 'Outer Detector' to veto neutrons Ο
 - Water tank to enhance muons veto 0
- Veto detectors allow to
 - Increase the usable active (fiducial) volume by Ο a significant fraction
 - In case of discovery to be able to demonstrate Ο a possible DM signal is not induced by neutrons

TAUP 2019 • Sep 12, 2019

(

1

T

Gd-LS + DI Water

Tyvek Reflektor

- A 2 t layer of LXe (skin) between the TPC and the cryostat is needed because of HV stand-off, differential thermal expansion between Ti vessel and PTFE reflector and TPC geometry
- Skin region and dome is instrumented to veto Compton recoils of ~MeV radiogenic gammas

- PTFE attached to the inner cryostat wall and bottom dome enhance light collection efficiency
- The combination of skin and outer detector creates a highly efficient integrated veto system
- Skin complementary to the scintillator veto since low energy γ-rays don't penetrate gammas the titanium ICV/OCV

Bjoern Penning

T

- The Outer Detector (OD) surrounds the central cryostat hermetically, filled with 17 t of scintillator
 - Conceptually similar to Daya Bay
- Liquid scintillator is doped with 0.1% Gd (Gd-LS) and held in large acrylic vessels
- Manufactured from UV transparent acrylic by Reynolds Polymer

- The Outer Detector (OD) surrounds the central cryostat hermetically, filled with 17 t of scintillator
 - Conceptually similar to Daya Bay
- Liquid scintillator is doped with 0.1% Gd (Gd-LS) and held in large acrylic vessels
- Manufactured from UV transparent acrylic by Reynolds Polymer

Bjoern Penning

- Gd has largest thermal neutron cross section of all stable elements: $\sigma_N = 240$ kb (Xe $\sigma_N = 0.2b$)
 - Doping with 0.1 % Gd reduces mean capture time to ≈30 µs from about ≈200 µs w/o Gd, thus reducing dead time
 - N capture followed by emission of about 3-5 gammas with about 8 MeV total energy:
 - n + ¹⁵⁵Gd → ¹⁵⁶Gd + 8.5 MeV (18%)
 - n + 157 Gd → 158 Gd + 7.9 MeV (82%)
- Probability to miss all γ's is much lower than detecting the single 2.2 MeV γ from hydrogen capture
- Gamma emission tails of O(100 µs), driving requirements on radioacity and impurity

- Scintillator is Linear Alkyl Benzene
 - Not flammable, merely combustible
 - Comparable to vegetable oil, safe underground
- 17.5 tonnes of Gd-LS produced at Brookhaven Natl. Lab.
- In direct DM detection the radiopurity of the Gd is of great concern
 - Neutrino experiments benefit from larger fluxes and higher energy thresholds.
 - Special attention to purification and radio-assay of Gd-LS at ~mHz using the 'screener'

 $(C_6H_6)-C_{(10-15)}H_{(22-32)}$

- Screener: small acrylic detector (1/1000 of mass of LZ OD) operated in water tank in Davis Cavern under strict radiopurity requirements
- Used to study LS loaded with Gd and w/o, sources for calibration and PSD for particle identification
- Achieved 10⁻⁴ mBq/kg sensitivity to impurities in Gd

- Measured ratio ${}^{14}C/{}^{12}C = 2.83 \pm 0.07 * 10^{-17}$, comparable to two order or magnitude larger detectors
- Lead to improvements in GdLS production to lower backgrounds
- Also useful to evaluate properties of Gd-LS, background fluxes and to gain operational experience

arXiv:1808.05595

- The OD will be viewed by PMTs and surrounded by a Tyvek reflector
- Water attenuates radioactivity from by the PMTs
- LED pulser system to calibrate timing and pulse area

- Using 120 8"-PMTs (Hamamatsu, R5912)
- PMT measurements performed and water tank test setup with DAQ and calibration system chain
- Real data, allows to understand PMT behaviour and develop reconstruction algorithms
- Test installation of full scale mechanical setup performed
- Production of OD light collection system ongoing at Brandeis

The Calibration System

- Liverpool built calibration system
 - Consists of 40 fibres injection points in the OD at different azimuthal locations heights
 - Monitor and calibrate output in real time

- Inject a known number of photons allows for a calibration: 100s to 10⁶s of photons
- Test system used for PMT characterization

Cavern Backgrounds

arXiv:1904.02112

- Used Nal detector to measure γ-ray flux in different locations in Davis Cavern
- Initial simulations suggested cavern was dominant background in OD, with large uncertainty from γ-ray rate.
- Measurement of ⁴⁰K, ²³⁸U and ²³²Th concentrations in rock
- Used to normalize γ-flux simulation with previously large uncertainties

Rate (Hz / keV) Background Rate (Hz) Upper Davis upshielder East Counting Room, unshielder South edge, shielded, looking down **PMTs** 0.9 av to south edge, shielded, looking o Centre, shielded, looking dow a) - Centre, shielded, looking up 10-TPC 0.5 i) - Centre, shielded, looking east Cryostat 2.5 10^{-2} **Outer Detector** 13.9 10^{-3} Cavern y-rays 27 10-4 2000 500 1000 1500 2500 3000 Total 45 Energy (keV)

Bjoern Penning

Performance

- At 200 keV, 500 µs after S1 scatter the OD will veto 96.5% of all neutrons that fake a WIMP in the TPC
- Might be possible to lower to 100 keV threshold while maintaining similar eff.
- Expect very high muon veto efficiency as indicated by early muon induced Cherenkov simulations

Bjoern Penning

- OD neutron reduction O(10⁴), with skin adding another sign. factor because of $(\alpha, n\gamma)$
- Application of veto reduces bkgds from about 12 counts to about 1 count for 1000 live-days
- OD almost doubles the usable fiducial LXe volume and provides additional information to constrain the NR background component in the PLR

- The LZ veto detectors are integral part of the search strategy for dark matter, fulfilling several crucial functions
 - Veto backgrounds from external sources, increasing the fiducial Xe volume by 2-3 tonnes
 - Mitigate the risk associated with material close to the Xe by characterizing the radiation field around the Xe
- A claim of a WIMP signal would require extraordinary supporting evidence
- The LZ Outer Detector is conceptually similar to the Daya Bay detector, but lower energy threshold, complex geometry
- Construction well underway:
 - Tanks at SURF
 - Light collection system presently fabricated in the US
 - Calibration system presently fabricated in the UK
 - Scintillator production at BNL finished, ready to ship to SURF
- Operational experience and data from test systems and simulation allow to prepare optimal physics use
- Installation and commissioning to start in a few months. Exciting times ahead!

Bjoern Penning

Backup

- Modified optical properties of the scintillator (LAB) within GEANT4
- Modified Birk's law based on measurements with the 'screener'
- Modified treatment of neutron capture on Gd accurate cascade modelling based on DICEBOX model: F. Becvar, Nucl. Instrum. Meth. A417, 434 (1998).

- Using 120 8"-PMTs (Hamamatsu)
- Measurements performed by Korea and waterank test setup with DAQ and calibration system chain
- Real data, allows to understand PMT behaviour and develop reconstruction algorithms

- Test installation of full scale mechanical mock up performed
- Production of OD light collection system ongoing at Brandeis

reconstructed neutron (delayed) capture energy spectrum

L

Rejection	No Vetoes		Skin Only		OD Only		Both Vetoes	
	neutrons	$(\alpha, n\gamma)$	Reutrons	(0,11))	peatrons	(0,11)	Peditors	(0,11)
²³⁸ U early chain	3.72E-03	2.60E-03	1.56E-03	5.94E-04	4.16E-04	2.38E-04	1.20E-04	4.65E-05
²³⁸ U late chain	3.20E-03	1.42E-03	1.28E-03	2.38E-04	3.81E-04	1.15E 04	LOSE 64	2.00E-05
²³² Th chain	3.09E-03	1.56E-03	1.30E-03	2.96E-04	3.29E-04	1.49E-04	1.04E-04	1.95E-05