Krypton removal via chromatography for the LZ dark matter experiment

Andrew Ames APS April Meeting 20 April 2020

On behalf of the LZ collaboration

Why Krypton Removal?

- Xenon extracted from the atmosphere contains trace krypton
 - ◇ Research grade: ~1-100 ppb ^{nat}Kr g/g
 - ◇ ~1 ppt ⁸⁵Kr in ^{nat}Kr
- decays of ⁸⁵Kr create electron recoil
 backgrounds in LZ
- Uniformly distributed in LXe cannot be mitigated by shielding
- Long half-life (~11 yr), and not removed by getter
- Science goals of LZ require < 0.3 ppt Kr

Background sources in LZ

Source	NR cts	ER cts
Detector components	0.07	9
Xenon contaminants	0	819
Laboratory and cosmogenics	0.06	5
Surface contaminants	0.39	40
Physics (neutrinos, ¹³⁶ Xe 2vββ)	0.51	258
Total	1.03	1195
Total with 99.5% ER discrimination, 50% NR efficiency	0.52	5.66

Isotope	ER cts
²²² Rn (1.8 µBq/kg)	681
²²⁰ Rn (0.09 µBq/kg)	111
^{nat} Kr (0.015 ppt g/g)	24.5
^{nat} Ar (0.45 ppb g/g)	2.5

Based on 1000 day WIMP search exposure; ER, NR ROI for ~40 GeV WIMP *arXiv:1802.06039*

Kr Removal via Gas Chromatography

- **Solution**: remove Kr from Xe at SLAC before beginning of the experiment
- **Gas chromatography:** Separation of a mixture of gasses based on differing transit times through stationary medium
 - Stationary medium = column filled with activated
 charcoal
- □ Kr has weaker van der Waals attraction to charcoal than Xe ⇒ Kr transits faster
 - \diamond Ar even more weakly attracted ³⁹Ar contamination easily reduced by same process
- Helium carrier gas maintains flow through column, with rate tunable for optimal separation

Kr Removal Process: 3 main phases

- 1. Chromatography loop: Separation of Xe and Kr
- 2. Recovery loop: Remove purified Xe from column
- 3. Storage:

Purified Xe compressed into cylinders

Kr Removal Process: Chromatography Loop

- Inject 16 kg of Xe (w/ ~1-10 ppb Kr) into column with He circulating
- Tunable He flow rate to optimize separation vs processing time
- Capture Kr in cold charcoal trap
- Monitor column
 output with RGA;
 circulation stops
 when Xe detected

Kr Removal Process: Recovery Loop

- Pump column down to ~10 mbar
 for max Xe removal efficiency
- Xe freezes out of Xe/He stream at LN temps
- Assay samples for Kr, other
 impurities (UMD sampling system)

Leybold 3-stage recovery vacuum pump

A. Ames | APS April Meeting | 2020.04.20

Kr Removal Process: Xenon Storage

- Collect purified Xe in freezer over multiple chromatography / recovery cycles (~300 kg)
- Warm freezer, compress Xe gas into cylinders (~80 bar)

Xe storage packs (designed & instrumented by UW-PSL)

Kr Removal System

- 2 columns = parallel processing
- 400 kg activated charcoal / column
- One chromatography + recovery cycle = ~5-6 hours
 - **Final product:** 10 tonnes of Xe with < 0.3 ppt ^{nat}Kr

System Automation

- □ Individual processes automated via PLC
 - Chromatography, recovery, Xe injection,
 freezer cooling and heating, LN delivery
- Python scripting coordinates timing and transitions between states
- Interface to queue multiple runs for continuous unattended operation
- Data continually aggregated and plotted for fast comparison between runs

System Status & Next Steps

- □ We have achieved a purity of 0.1 ppt in initial runs on ~1 ppb Xe (< 0.3 ppt)
- □ Successful storage of ~100 kg batches from freezer to bottles
- With automated continuous operation, will explore and optimize more parameters
 - Ambient temp affects chromatography transit time -- explore this relationship and mitigate by changing flow rate
 - ◇ Optimal column pressure for most efficient recovery of purified Xe?
- Lab work is currently on hiatus due to COVID-19 precautions
 - System has been put into a stable state, ready for restart as soon as we can return
 - Once processing resumes, begin large-scale processing and move toward unattended continuous operation

Thank you!

System diagram

ER Background Spectra

ER background spectra in the 5.6-tonne fiducial volume for single scatter events, without vetos or cuts *arXiv:1802.06039*

A. Ames | APS April Meeting | 2020.04.20