THE LZ DARK MATTER EXPERIMENT

 $\langle \chi | \langle v \rangle$

Carmen Carmona

Penn State University

December 4, 2020 - APS MAS Meeting

Dark Matter Evidence

Indirect Detection (DM annihilation) HAWC, ANTARES, Fermi, IceCube, MAGIC, CTA, AMS, HESS,VERITAS, GAPS...

Accelerator Searches (DM production) LHC, LDMX

WIMPs Direct Detection

- WIMPs scatter off nuclei (NR)
 - Expect recoils O(10 keV)
 - + Expect < I event / tonne / year</p>
- Backgrounds
 - + Gammas and electrons scatter off atomic electrons (ER)
 - Neutrons also scatter off nuclei (NR)
 - Neutrinos! new enemy. ER, NR. Can't be shielded against

Signal: Nuclear Recoil (calibrate with neutrons)

Background: Electron Recoil

Dual Phase Noble Liquid TPC

^{99.8%} discrimination, 50% NR acceptance

A Typical Event

Carmen Carmona - Penn State

Sanford Underground Research Facility (SURF) in Lead, SD

Carmen Carmona - Penn State

APS MAS Meeting, December 2020

Lead, SD

LZ Detector Overview

Xenon TPC

- 1.5 m diameter x 1.5 m height
- 7T active LXe (5.6T fiducial)
 - + x50 more than LUX
 - + x6 XENONIT
- 50 kV cathode HV
- 494x 3" PMTs
- Gas circulation @ 500 slpm (turnover full mass in 2.4 days)
- Instrumented Xe skin region, outside the field cage

PMT arrays

Hamamatsu R11410 (3")

- Top array: 253 PMTs
- Bottom array: 241 PMTs

Assembled TPC

 Detector integration started in December
2018 at Surface
Assembly Laboratory
(SURF) ~13,500
working hours

Insertion into inner cryostat vessel

Ti Cryostat

- Intensive R&D program identified low activity titanium material (<u>Astropart. Phys. 96, 1-10 (2017</u>))
- Arrived at SURF May 14, 2018

ICV and OCV HV ports alignment and parallelism < 1 mm</p>

APS MAS Meeting, December 2020

Test fitting

Transport of TPC Underground

October 2019

Underground deployment

LZ Cryogenics

 Cooling provided by thermosyphon technology (also used in LUX)

Circulation System

APS MAS Meeting, December 2020

Circulation System & Commissioning

- Design gas circulation rate: 500 slpm
 - Turnover full xenon mass every 2.4 days
- Purification using hot zirconium getter
 - Removes non-noble impurities
- Underground commissioning completed
 - Exercise xenon delivery, circulation, and recovery systems with a modest liquid xenon payload in a full-height test cryostat prior to the installation of the LZ TPC
 - + Up to 600 slpm demonstrated

Carmen Carmona - Penn State

Current Status

- Significant progress in the assembly of the TPC and associated systems
 - + TPC complete and moved underground; HV cathode connection installed; Circulation testing complete
- Out of concern for the health of our staff and to slow the spread of the COVID-19 virus:
 - + Shut down in mid-March; Reopened at reduced capacity in the summer
- Work continues while following institutional, local, and national guidelines
 - + LZ construction almost complete!

Background sources and mitigation

- Detector materials
 - Nothing went into the detector without screening
 - Radio-assay campaign with 13 HPGe detectors, ICPMS, neutron activation analysis
- Rn emanation
 - Four screening sites
 - + All major parts emanated before assembly
 - Target Rn activity: 2 µBq/kg
- Rn daughters and dust on surfaces
 - + TPC assembly in Rn-reduced cleanroom
 - Dust <500 ng/cm² on all LXe wetted surfaces
 - Rn-daughter plate-out on TPC walls <0.5 mBq/m²
- Xenon contaminants ⁸⁵Kr, ³⁹Ar
 - Charcoal chromatography at SLAC
- Cosmogenics and externals
 - + 4300 m.w.e. underground at SURF in Lead, SD
 - Instrumented Xe skin region
 - Gd-LS outer detector
 - + High purity water shield

Many sources of BG Many methods for BG mitigation

Eur. Phys. J. C, 80: 1044 (2020)

Kr Removal System

How to maximize the WIMP target mass?

• No veto

140 120 100 **Fiducial Volume** z [cm] 80 3.2 tonnes 60 40 20 $00^{2} 20^{2} 30^{2}$ 50² 40^{2} 60² 70² r² [cm²]

Xe-TPC only

Xenon "Skin" veto

- Anti-coincidence detector for γ-rays
- 2 tonnes of LXe surrounding the TPC
- I" and 2" PMTs at the top and bottom of the skin region
- Lined with PTFE to maximize light collection efficiency

Outer Detector

• Suppression of neutron-induced nuclear recoil rate \Rightarrow maximize fiducial volume.

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Observe ~8 MeV γ -rays from thermal neutron capture
- >95% efficiency for tagging neutrons
- Draw on experience from Daya Bay

APS MAS Meeting, December 2020

How to maximize the WIMP target mass?

Combined veto system allows to define fiducial a volume of 80% of active volume

Expected backgrounds for 5.6 T fiducial - 1000 days

Carmen Carmona - Penn State

APS April 2020

Expected backgrounds for 5.6 T fiducial - 1000 days

• Simulation of a 1000 day run of LZ

Phys. Rev. D 101, 052002 (2020)

Projected Sensitivity (5.6 T exposure, 1000 live days)

(Thank You!

2021 will be an exciting year for direct detection!

~36 institutions, 250 scientists, engineers, technicians

Backup Slides

ER searches

- Sensitive to electron recoils from many types of new physics including
 - Neutrino magnetic moment
 - + Solar axions (axio-electric effect)
 - + Axion like particles
- Paper in preparation describing LZ sensitivity to these signals

Non-WIMP sensitivity - $0\nu\beta\beta$

Phys. Rev. C 102, 014602 (2020)

- ¹³⁶Xe Q value at 2458 keV
- Nominal 1% energy resolution at Q value
- T_{1/2} (90% C.L.) > 1 x 10²⁶ years in 1000 live days, inner 1 tonne fiducial mass