The LUX-ZEPLIN Dark Matter Experiment

Hugh Lippincott, UCSB for the LZ collaboration July 30/31, 2020 ICHEP 2020

~36 institutions, 250 scientists, engineers, technicians

Two phase Xenon Detectors

- Interaction in the xenon creates:
 - Scintillation light (~10 ns)
 called SI
 - Ionization electrons
- Electrons drift through electric field to liquid/gas surface
 - Extracted into gas and accelerated creating proportional scintillation light - called S2

Two phase Xenon Detectors

- Excellent 3D reconstruction (~mm)
 - Z position from SI-S2 timing
 - XY position from hit pattern of S2 light
 - Allows for self shielding, rejection of edge events
- Ratio of charge (S2) to light (S1) gives particle ID
 - Better than 99.5% rejection of electron recoil events

LXe as Dark Matter Target

Problem	Solution	Liquid Xenon	
Extremely rare	Large mass	Very dense - 3 tonnes in 1 m ³	√ √ √
Energy depositions of ~10 keV or below	Low energy thresholds	~60-70 electrons + photons / keV	√ √
Backgrounds - Impurities	Purification	Noble gases are (mostly) easy to purify	√ √
Backgrounds - Detector	Self shielding	Low mean free path for ionizing radiation	√ √ √
Backgrounds - Internal/Detector	Discrimination	Charge to light ratio gives particle ID	√ √

Sanford Underground Research Facility

- LZ located at the 4850 level (~1.5 km underground)
- 4300 m.w.e. overburden
- Muon flux reduced by O(10⁷)

LZ design notes - TPC

NIM A, 163047 (2019)

- I.5 m diameter x I.5 m height
- 7T active LXe (5.6T fiducial)
 - x50 more than LUX, x6 XENONIT
- 494x 3" PMTs
- 50 kV cathode HV

HV CONNECTION TO CATHODE

LZ design notes - the Veto

NIM A, 163047 (2019)

The OD

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe ~8 MeV γ-rays from thermal neutron capture
- Draw on experience from Daya Bay

9

<u>INIM A, 105047 (</u>

The Skin

- 2 tonnes of LXe surrounding the TPC
- 1" and 2" PMTs at the top and bottom of the skin region
- Lined with PTFE to maximize light collection efficiency
- Anti-coincidence
 detector for γ-rays
- Tag individual neutrons and γ-rays
 - >95% efficiency for tagging neutrons
- Characterize BGs in situ
- →Enables discovery potential

LZ design notes - the Veto

No veto Xe skin & OD veto

- Combined veto system allows to define a fiducial volume of 80% of active volume
 - Alternatively, takes fiducial volume from 3.2 tonnes on left to 5.6 on right

LZ design notes - Purification

KNF

NIM A, 163047 (2019)

Detector Backgrounds

A - 1.6 mm from Loterios stock B - 3.2 mm from LZ stock C - 1.6 mm twisted wire made from LZ stock

12

Detector Backgrounds

arXiv:2006.02506

- TPC assembly in Rn-reduced cleanroom
 - Dust < 500 ng/cm² on all LXe wetted surfaces
 - Plateout on walls <0.5 mBq/m²
- Radon emanation
 - Four screening sites
 - All major parts emanated before assembly

10 Nuclear recoil energy [keV]

1

10

Expected Backgrounds in 1000 days

 10^{2}

Phys. Rev. D 101, 052002 (2020)

Backgrounds in full exposure	ER (cts)	NR (cts)
Total Counts	1131	1.03
with 99.5% ER discrim., 50% NR eff.	5.66	0.52

Expected Backgrounds in 1000 days

Simulation of a 1000 day run of LZ

Phys. Rev. D 101, 052002 (2020) 15

Sensitivity in 1000 days

Phys. Rev. D 101, 052002 (2020)

Non-WIMP sensitivity - 0vBB

Phys. Rev. C 102, 014602 (2020)

- ¹³⁶Xe Q value at 2458 keV
- Nominal 1% energy resolution at Q value
- T_{1/2} (90% C.L.) > 1 x 10²⁶ years in 1000 live days, inner 1 tonne fiducial mass

ER searches

10⁻²⁴

 10^{-25}

pD

- Sensitive to electron recoils from many types of new physics including
 - Neutrino magnetic moment
 - Solar axions (axio-electric effect)
 - Axion like particles
- Paper in preparation describing LZ sensitivity to these signals
- Recent XEN®N1T results have highlighted importance of low energy backgrounds like ³H and ³⁷Ar T CON 10⁻²⁹

The Picture Round!

Outer Detector

DETECTOR ASSEMBLY

- Detector integration started in December 2018 at Surface Assembly Laboratory (SURF)
- 13,500 working hours
 - Class 1000 CR but performing much better
 - Reduced radon environment
- Bringing tens of thousands of ultra-clean, low-background components together

SKIN DETECTOR

P SKIN:

PHTS

BOTTOM SKIN: 20+18 2" PMTS

ELECTRODE GRID WEAVING

- 4 meshes using 75/100 µm wire, woven using automated loom,
- epoxied to holding rings
- Major QA program for mechanical & electrical resilience, and for cleanliness
- Probably the most challenging components in the experiment

TPC FIELDCAGE & REVERSE-FIELD REGION

Ti: 1702.02646 PTFE: 1612.07965, 1608.01717

EXTRACTION REGION

TOP SKIN

COMPANY OF

TPC FIELDCAGE (ACTIVE XENON)

CATHODE GRID REVERSE-FIELD REGION BOTTOM PMT ARRAY

Insertion into inner cryostat vessel

Transport Underground (Oct 2019)

Cathode Connections

Making up cathode connections (under N2 purge)

Cryostat in water tank with cathode connection (OD tanks in background)

Circulation System

Water tank flange

Transfer Lines

Thermosyphon panel

Xe tower

Xe Circulation Compressors

Krypton Removal

Current Status

- Significant progress in the assembly of the TPC and associated systems.
 - TPC complete, moved underground and currently at vacuum
 - HV cathode connection installed
 - Circulation testing complete
- SARS-CoV-2...
 - Mostly shut down in mid-March
 - Re-opening at somewhat reduced capacity starting in May-June
- Ramping back up as much as possible while following institutional, local, and national guidelines

Current Status

Titanium paper Feb 2017

- LZ construction almost complete
 - TPC underground, final connections being made
 - Expected 5.6 tonnes fiducial volume
 - Integrated outer detector veto for background
 - rejection/characterization
- Factor of ~40 improvement in sensitivity on current best limits
 - Discovery potential
 - Including wide variety of non-WIMP physics
- 2021 will be an exciting year for direct detection

Expected Backgrounds in 1000 days

*Not including ⁸B or hep

36

 10^{-11}

20

40

Nuclear recoil energy [keV]

60

80

100