The LUX-ZEPLIN Detector
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Backgrounds in the LZ Experiment
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 The LUX-ZEPLIN project (LZ) is a direct detection experiment employing a liquid xenon
(LXe) time projection chamber (TPC), located 1 mile underground in the Sanford
Underground Research Facility (SURF), in South Dakota. LZ is currently being

 LZis optimized for the detection of WIMP-induced, keV-scale nuclear recoils, and benefits
from low background rates due to both radiopure detector materials, high purity LXe, and

 The detector includes an integrated veto system, consisting of a liquid scintillator outer
detector, a xenon skin, and a water tank, which allows for non-WIMP interactions to be
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Time projection chamber (TPC) where interactions
in xenon produce scintillation (S1) and ionization

 The heart of the detector is a TPC which contains a 7 tonne active volume of LXe where
particle interactions produce prompt scintillation (S1) and ionization electrons. Electrons
drift under electric field to gas region where they electroluminesce and produce

 TPCs also have accurate 3D position reconstruction. X-Y position is reconstructed using
the S2 light pattern on the top PMT array, and Z position is reconstructed using the drift

* Nuclear and electronic recoils in xenon produce different charge-light yields, thus
producing two distinct bands in S1-S2 space and providing recoil type discrimination.
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Backgrounds

 The dominant backgrounds in LZ are from internal xenon contaminants: Rn222 and Rn220 and

their daughters; Kr85; and Xe136. Contributions from radioactive detector materials/
surroundings and solar/atmospheric neutrinos are extremely subdominant.

 Kr85is intrinsic to the Xenon, and its concentration can be greatly reduced, but not eliminated,
via charcoal chromatography. Radon emanates from detector materials and dust and produces
backgrounds from the naked beta decays of Pb214 and Pb212.
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= 5.66 events after 99.5% ER discrimination =~ 0.52 events after 50% NR acceptance

Total ER and NR backgrounds for a 40 GeV WIMPE, after all cuts have been applied for a 1000-day search and 5.6 tonne fiducial
volume. WIMP Region of interest is 1.5-6.5 keV for ERs and 6-30 keV for NRs.
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Unlike alphas, naked Kr85 beta decays can not be distinguished in
data from other backgrounds leaving the beta-gamma coincidence
as the only means of identification.

 Radon and its daughters, in both chains, can be readily tagged by identifying the alpha decays.
Alphas are densely ionizing in LXe and thus produce extremely large S1 signals which are easily
distinguishable in S1-TBA (top-bottom asymmetry of light collection) space. TBA is an effective proxy
of depth in the detector. Light collection efficiency varies as a function of depth, thus leading alphas
to form bands in a plot of S1 versus TBA.

Mercury

e After correcting for light collection efficiency, alphas form clear S1 peaks such that the activity can
be extracted by fitting the sum of four gaussians.
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Using GEANT4 based simulation of the LZ detector and NEST® (Noble Alpha spectra in S1 space after making a TBA based
Element Simulation Technique) for generating xenon 51,52 response, it can correction e.qg. correcting for light collection efficiency as a
be seen that alpha decays form distinct bands in S1-TBA space. function of depth.
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Tagging Radon and Krypton

 Both Radon chains contain a Bismuth-Polonium (BiPo) coincidence where the Bi beta decays and is followed by a
short-lived Po - 164us for Rn222 chain and 300 ns for Rn220 chain — which decays via emission of an alpha.

 Kr85 naked beta decays to Rb85 99.57% of the time, but 0.43% of the time it beta decays to Rb85m with a half-life
of 1.015 us, which in turn decays to Rb-85 via 514 keV gamma.

 The identifying feature of these events is the decay coincidence: beta-gamma for Kr85 and beta-alpha for Rn,
corresponding to a coincidence of two S1s.

e S2s are quite large O(1-2 ps) width, and will often merge, thus making it difficult to identify an S2 coincidence.
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* For both BiPo and Kr85 coincidences there is a loss of events when either, for separations < 150 ns, the two

S1s will merge or when the S1 separation time exceeds the drift time of the first decay. In the latter case, an
S2 signal will occur before the second S1, causing event classification to fail.

* Inthe Kr85 case, we use a 10 us window and require that the smaller and larger S1s have an area matching a
Q=173 keV beta and a 514 keV gamma, respectively. One can similarly restrict the S2 area based on the
estimated beta and gamma S2 areas.

Constraining Rates and LZ Projected Sensitivity
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