

Xin Xiang, Ph.D. On behalf of LZ Collaboration Magnificent CEvNS 2021

Physics Reach of LZ

• LZ detector is multi-purpose (Swiss-Army-Knife)

- Projected World-leading Dark Matter Sensitivity
 - Full exposure: 15.3 tonne-year
 - SI WIMP-nucleon sensitivity: 1.4x10⁻⁴⁸ cm²
 @ 40 GeV
 - SD WIMP-neutron (proton) sensitivity: $2.7x10^{-43}$ (7.1x10⁻⁴²) cm² @ 40 GeV
 - Sub-GeV masses accessible via Migdal effect

[_____] 10⁻³⁷

 10^{-39}

10-40 1

 10^{-41}

10-421

SD WIMP.

- Search of Other DM Candidates:
 - ALPs, hidden photon, mirror DM, etc
- Non-DM Physics
 - Solar axions, supernova neutrinos
 - Neutrino magnetic moment
 - Search of $0\nu\beta\beta$
 - \circ 2vECEC on ¹²⁴Xe

Working Principle of a TPC

scintillation photons, UV ~175 nm

Coherent \rightarrow sees nucleus as a whole Elastic \rightarrow no nuclear excitations

X. Xiang (2021)

S2/S1 ratio depends on dE/dxER produces relatively more

charge than NR

Background (ER/NR) to Dark Matter Search:

- Internal LXe:
 - \circ ²²²Rn (target: 2 µBq/kg), ²²⁰Rn, ⁸⁵Kr, ¹³⁶Xe
- Material γ-rays:
 - \circ ²³⁸U, ²³²Th chains, ⁶⁰Co, ⁴⁰K
- Physical: solar *pp* neutrinos
- Detector material: (a,n) & spontaneous fission
- Cosmogenic neutrons
- CEvNS:
 - Solar ⁸B, Atmospheric, Diffuse Supernova, Solar *hep*
- Surface backgrounds (a-decays, recoiling nuclei)

LXe TPC has powerful discrimination against ER backgrounds

Discrimination Study from LUX Run 4 Data

The Veto System

Neutrons are suppressed by shielding & active neutron veto

Three Layers System:

- 1. A layer of LXe skin in the TPC inner cryostat, monitor by separated PMTs
 - a. tagging γ -rays efficiency: >95%
- 2. Acyclic vessels surrounding TPC cryostat
 - a. Gd (0.1% doped) loaded LS (Linear Alkyl Benzene)
 - b. Neutron captured on Gd followed by emission of $3-5 \gamma$ -rays:
 - i. $n + {}^{155}Gd \rightarrow {}^{156}Gd + 8.5 \text{ MeV} (18\%)$
 - ii. $n + {}^{157}Gd \rightarrow {}^{158}Gd + 7.9 \text{ MeV} (82\%)$
 - c. neutron veto efficiency > 95%
- 3. Water Tank as a passive shielding

Photo of the LZ TPC

Acyclic Vessels Inside the Water Tank

LXe TPC as Neutrion Observatory via CEvNS

- LXe is an excellent target for CEvNS
 - Enhanced cross-section due to $\sim N^2$
 - Sensitive to **sub-keV** CE*v*NS (high scintillation and ionization yield)
- LXe TPC is optimized for observing rare NR from WIMPs (same as CEvNS signature)
 - Low backgorund (radiopurity & shielding & veto)
 - **S2/S1** (ionization to scintillation ratio) discriminates against Electronic Recoils (ER) events
 - Scalable detector

Suitable for observing natural neutrino via CEvNS down to 5 MeV

CEvNS from Natural Neutrinos

All CEvNS recoil spectra that LZ is capable of seeing

- ⁸B spectrum is the same as a 6 GeV WIMP
- Atm. spectrum is the same as WIMPs > 100 GeV

This gif animation does not work in the pdf version

Supernova Neutrino

- LZ is a member experiment of the Supernova Neutrino Early Warning System 2.0 (SNEWS 2.0) network.
- Observed signal is a stream of S2 pulses within 10 seconds

Opportunity: the First ⁸B Observation via CEvNS

- ⁸B has never been observed in CEvNS channel. This is exciting!
- Events populate near threshold (purple).
- The expected event rate (FV=5.6e3 kgd) is sensitive to the thresholds (preliminary):
 - LZ threshold (3-fold, $N_{ee} \ge 5$): (2.7 ± 0.69^{yield}) evt/100 day
 - Lower threshold (2-fold, $N_{ee} \ge 5$): (12 ± 2.3^{yield}) evt/100 day
- A significant claim is not a matter of if, but a matter of when

	3-fold (S1 ≥ 3 phd)	$\begin{array}{c} \text{2-fold} \\ \text{(S1} \geq 2 \text{ phd)} \end{array}$	S2-only (0 or 1 phd)
Nee ≥ 8 e-	1.39	5.32	23.6
Nee ≥ 7 e-	1.78	7.1	37.8
Nee ≥ 6 e-	2.23	9.42	58.4
Nee ≥ 5 e-	2.73	12.1	91.7
Nee ≥ 4 e-	3.25	15.4	142
Nee ≥ 3 e-	3.73	18.8	217

NEST Simulation of ⁸B Rate in 100 day (preliminary) (Assuming efficiency from the right plot)

Challenge: Accidental Coincidence

- An accidental coincidence event occurs when an isolated S1 randomly pile-up with an isolated S2
- Possible sources of isolated S1:
 - Dark count pile up
 - Cherenkov in PMT windows / PTFE wall
 - Energy deposition occurs in non-drifting region
- Possible sources of isolated S2:
 - field electron emission from gate and cathode grids
 - delayed electron emission following S2s (ex. electron trapped at liquid surface or captured by impurity)
 - radiogenic grid emission
- Data-driven Modeling
 - Find isolated S1 events and isolated S2 pulse, and randomly pair them up (top plots)

- Features & Rejection:
 - Asymmetric S2 pulse shape (Machine Learning)
 - Drift time is uncorrelated to electron diffusion (Drift time vs S2 width)
 - Correlate with PMT that has abnormally high DC rate (PMT tagging)

The ⁸B Rate Uncertainties

The Ly Uncertainty

- The Ly uncertainty for low-energy NRs is studied
 - Uncertainty in 8B Rate (preliminary): ~25% (3-fold) ~18% (2-fold) 0
 - Ly variation affects both WIMPs and CEvNS (correlated) 0
- In comparison, Qy uncertainty for $N_{ee} > 5$ threshold: 6%
- The effect on the proj. sensitivity is investigated:
 - Earlier saturation at high exposure 0
 - Short-term (<100 days) effect is subdominant to Poisson fluctuation 0
- Low-energy NR calibration requirement is quantified.

13

Mitigation Strategy - DD Calibration

Mitigation Strategy - Photoneutron Calibration

Proposed as DM calibration: J. I. Collar. PRL, 110(21), 2013.

- (γ, n) reaction
 - Match γ energy to Q-value \rightarrow low-energy n Ο
 - Small cross-section $\rightarrow 10^4$:1 γ -n yield \rightarrow Tungsten 0 shielding
- ⁸⁸Y-Be source:
 - 3.7 MBg ⁸⁸Y MeV-scale γ -rays 0
 - $E_n \sim E_{\gamma} + Q \rightarrow \sim 470 \text{ n/s}, E_n \sim 153 \text{ keV}$ Single-scatter NR endpoint: 4.6 keV_{nr} Ο
 - Ο
- For more info, see: A. Biekert (APS April 2019)

Atmospheric Neutrino and the Neutrino Floor (Fog)

Atm. Neutrino Uncertainty:

- Current 20% (E_v<100 MeV), 15% (E_v<1 GeV) u/c comes from calculation [Honda 2011]. No direct experimental measurement for sub-GeV *atm*.
- Future experimental constraint (not necessarily a completed list):
 - DUNE [<u>K. J. Kelly 2019</u>]:0.1 1 GeV range
 - *Hyper- Kamiokande* [Z. Li 2017], 100 MeV 10 TeV
 - JUNO [<u>G. Settanta 2019</u>], 0.1 GeV 10 GeV range, projected u/c: 10% to 25%

Atmospheric Neutrino and the Neutrino Floor (Fog)

Atm. Neutrino Flux Uncertainty:

- Current 20% ($E_{v} < 100$ MeV), 15% ($E_{v} < 1$ GeV) u/c from calculation [Honda 2011]. No direct experimental measurement for sub-GeV.
- Future experimental constraint (not necessarily a completed list):
 - DUNE [<u>K. J. Kelly 2019</u>] : 0.1 1 GeV range
 - *Hyper- Kamiokande* [Z. Li 2017], 100 MeV 10 TeV
 - JUNO [G. Settanta 2019], 0.1 GeV 10 GeV range, projected u/c: 10% to 25%

Effect on WIMP Sensitivity (neutrino floor/fog)

- An generic LXe detector simulated by <u>NEST</u>
 - NR efficiency curve is similar to LZ (slide 10, black curve)
 - Total ER leakage: 10⁻⁴ below NR median
- Backgrounds considered (Rn is ignored):
 - Atmospheric neutrino (20% u/c)
 - *pp* neutrinos
 - ¹³⁶Xe 2νββ (N.A., $T_{1/2} = 2.11 \times 10^{21}$ yr [EXO-200])
- PLR Setting:
 - Two-sided, Frequentist, $\mu_s > 0$, ... [arxiv: 2105.00599]

- Ton-scale LXe detector is sensitivie MeV-scale natural neutrinos via CEvNS
- Opportunity for LZ to make the first detection of 8B in CEvNS channel
- CEvNS presents challenges for WIMP searches
 - Above 100 GeV: hard neutrino floor (fog) due to atm. uncertainty
 - \circ 4-10 GeV: neutrino floor (fog) due to ⁸B uncertainties (light yield)
 - Short-term impact is subdominat to Poisson fluntation .
 - Long-term impact on sensitivity → improvement in light yield measurement is crucial
 - 10 GeV 100 GeV: soft neutrino floor (fog) due to different spectrum shape between WIMP and atm neutrinos
- Next Generation Liquid Xenon experiment may (aside from WIMP search) measure:
 - solar pp (Weinberg's angle $sin^2\theta_W$) via electron scattering
 - ⁸B (NC NSI) via CEvNS
 - CNO (Solar metallicity) via Charge Current

Acknowledgements - Thank You!

@lzdarkmatter https://lz.lbl.gov/

Black Hills State University •

- **Brandeis University** ٠
- **Brookhaven National Laboratory** .
- **Brown University** .
- Center for Underground Physics .
- Edinburgh University .
- Fermi National Accelerator Lab. .
- Imperial College London .
- Lawrence Berkeley National Lab. •
- Lawrence Livermore National Lab.
- LIP Coimbra .
- Northwestern University .
- Pennsylvania State University .
- **Royal Holloway University of London** .
- SLAC National Accelerator Lab. .
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab. .
- Texas A&M University .
- University of Albany, SUNY .
- University of Alabama .
- University of Bristol .
- University College London .
- University of California Berkeley •
- **University of California Davis** .
- University of California Santa Barbara •
- University of Liverpool .
- University of Maryland .
- University of Massachusetts, Amherst .
- **University of Michigan** .
- University of Oxford .
- **University of Rochester** .
- University of Sheffield .
- University of Wisconsin, Madison .

LZ Collaboration Meeting - September 8-11, 2021

Thanks to our

sponsors and

participating

institutions!

U.S. Department of Energy Office of Science

Backup

Livermore (2020) measurement significantly brings down the Qy uncertainty, comparing to Ly

The expected ^{8}B rate varies ~6% due to Qy variation.

Background Energy Spectra

PMT Arrays

